EOS Topical Meetings at Capri

4th EOS Topical Meeting on Optical Microsystems (OµS’11)
2nd EOS Topical Meeting on Lasers (ETML’11)

26 - 28 September 2011, Capri, Italy
EOSAM 2012 moves to Aberdeen

Aberdeen Exhibition and Conference Centre, Scotland (UK) | 25 - 28 September 2012

Present your research in the energy capital of Europe!

Topical Meetings
- TOM 1 Biophotonics
- TOM 2 tba
- TOM 3 Nanophotonics
- TOM 4 Micro-Optics
- TOM 5 Organic Photonics
- TOM 6 Nonlinear Optics
- TOM 7 „Blue Photonics“ - Optics in the Sea

Workshop
- Continuing education:
 - Short courses for industry

Exhibition
- Special focus on „blue photonics“

Sign up for updates at www.myeos.org/events/eosam2012
About EOS ... 1

GENERAL INFORMATION

Venue ... 2
Getting there ... 2
Accommodation information & hotel list .. 4
Information for authors and attendees 6

OMS

Foreword by the General Chairs .. 8
Scientific Committee .. 8
Plenary Speakers .. 9
Invited Speakers .. 9

LASERS

Foreword by the General Chair .. 12
Programme Committee ... 12
Invited Speakers .. 13

PROGRAMME

At a glance ... 15

Oral presentations

Monday, 26 September ... 17
Tuesday, 27 September ... 23
Wednesday, 28 September ... 32

Poster presentations

OMS .. 36
ETML .. 41

Registration fax form .. 44
Sponsoring opportunities .. 46
Upcoming EOS events ... 49

Contact: European Optical Society (EOS) · Petra Bindig (Senior Project Manager) · Pamela Klages (Junior Event Manager)
Hallerithalle 8 · 30419 Hannover, Germany · Phone: +49 (0)511 277-2678 · Fax: +49 (0)511 2788 119
Email: capri@myeos.org · URL: www.myeos.org/events/capri2011
EOS Membership

ABOUT EOS

History

The European Optical Society (EOS) was founded in 1991. The purpose of the society is to contribute to progress in optics and related sciences, and to promote their applications at the European and international levels, by bringing together individuals and legal entities involved in these disciplines and their applications. EOS is a not for profit organisation and serves as the joint forum for all individuals, companies, organisations, educational institutions, and learned and professional societies, who recognise the opportunity and challenge that a common European base provides for the development of optics in its broadest sense. EOS organises recognized topical meetings, conferences, workshops and other events, publishes journals and is an important player on the European level. 22 national optical societies and a great number of individuals and companies are currently members of EOS (www.myeos.org).

Membership modes and fees

Individual membership
Annual fee: 50 €

Individual membership through an EOS Branch
Every member of an EOS Branch is automatically an individual member of the EOS, too, with all benefits.
Annual fee: included in the Branch membership fee

Student membership
Annual fee: 10 €

Associate membership through an EOS Affiliated Society
Every member of an EOS Affiliated Society is automatically an associate member of the EOS, too, but with limited benefits.
Annual fee: included in the Affiliated Society membership fee

EOS membership - Join us and...

• Be a part of the umbrella organisation of the national optical societies in Europe
• Connect with colleagues from all over Europe and beyond
• Contribute to strengthening Europe's future in optics and photonics
• Stay up-to-date about European Research Funding
• Benefit from discounts on EOS events and publications in the EOS online journal JEOS:RP
• Receive the Annual EOS Member Directory - your guide to the European optics and photonics community

Activities

• Organisation of topical meetings, workshops and conferences, and endorsement of other scientific events
• Operation of a virtual platform for the European optics and photonics community at www.myeos.org
• Focus Groups and Student Clubs (as of 2011)
• Publication of JEOS:RP, the electronic Journal of the European Optical Society - Rapid Publications (www.jeos.org)
• Bi-monthly electronic member newsletter
• Representation of the optics and photonics community on the European level (Photonics21 Technology Platform)
• Annual award of the EOS Prize

Upgrade for associate members
Upgrade to an individual EOS membership with full benefits.
Annual fee: 12.50 €

Corporate membership through an EOS Branch or Affiliated Society
Annual fee: 200 €

Direct corporate membership
Annual fee: 300 €

How to join
To join the EOS as an individual, student or corporate member, please see our website at www.myeos.org/members.

Questions?
Please contact the EOS office at info@myeos.org.
VENUE

Capri is a beautiful and picturesque island in the Gulf of Naples that has been attracting countless visitors for thousands of years. Its mild climate, the numerous monuments and island highlights and last but not least the excellent Italian cuisine and wine culture make Capri a perfect location for high-quality EOS Topical Meetings in an enjoyable Mediterranean atmosphere. See also: www.capri.it

The 2nd EOS Topical Meeting on Lasers (ETML’11) takes place at the:

Hotel La Residenza
Via Federico Serena, 22
80073 Capri (NA), Italy
phone +39 081 837 0833
fax +39 081 837 7564
info@laresidenzacapri.com
www.laresidenzacapri.com

The 4th EOS Topical Meeting on Optical Microsystems (µsS’11) takes place at the:

Palazzo dei Congressi di Capri
Via Sella Orta 3
80073 Capri (NA), Italy
phone +39 081 837 5841
fax +39 081 837 6046
www.caprimed.it/sede-capri.htm
www.palazzocongressicapri.com

GETTING THERE

BY PLANE

The next airport to Capri is the Airoporto Internazionale di Napoli that can be reached from various international airports in the world.

GETTING FROM THE AIRPORT TO THE COAST

To get from Naples Airport to the ports serving Capri, the most convenient way of getting there would be taking the AliBus. The station is situated right in front of the airport. The AliBus connects ‘Naples International Airport’ with the Port Terminal at ‘Piazza Municipio’ (the travelling time is about 30 minutes), that is located just a few steps away from ‘Molo Beverello’.

→ You can purchase your ticket for the AliBus on board, it costs approximately 3 EUR, is valid for 90 minutes and can be used on other city transport services (departures of the AliBus every 20 minutes from 6.30 to 23.30).

Alternatively, you can take the bus 3S that runs from 6.00 a.m. up to 23.00 and leaves approx. every 30 minutes. The bus makes all the normal stops along its route and it passes near the Central Station and near the harbour.

→ The ticket is the standard one for all the urban lines, called ‘Unico Napoli’, which in its base version costs 1 EUR and lasts 90 minutes from its first use. It is not possible to buy it on the bus, but it is for sale inside the airport.

Moreover, you may also take a taxi or a rental car to get to the ports serving Capri.

→ Several hotels do also offer to organize the travel arrangements for their guests to and from the island. For additional information and costs thereby incurred, please contact the hotels directly.

AliBus
Right in front of the airport is the AliBus station
→ Airport of Naples
 www.portal.gesac.it/portal/page/portal/internet
→ Getting to Capri
 www.capri.com/en/come-arrivare
→ AliBus
 www.gesac.it/en/alisbus.html

GETTING FROM THE COAST OF NAPLES TO CAPRI

You can reach Capri by ferry or by hydrofoil from Naples or Sorrento.

From Naples
From ‘Molo Beverello’ you may take the hydrofoil to the island of Capri (the journey takes about 40 minutes and costs approximately 17 EUR) or the ferry from ‘Calata di Massa’ (the journey takes about 80 minutes and costs approximately 11 EUR). A shuttle service connects ‘Molo Beverello’ and ‘Calata Porta di Massa’. The Capri.net island guide recommends to take the hydrofoil from ‘Molo Beverello’ because of the greater frequency of
GETTING THERE (continued)

Departures and larger selection of hydrofoils.

From Sorrento
The ferry takes about 40 minutes and costs about 13 EUR, while the hydrofoil takes about 20 minutes and costs about 15 EUR.

→ There will be a small fee for large baggage brought on board. The baggage fee is paid at the time of ticket purchase, and you will be given a special ticket for each bag.

→ Fees may vary according to the operating company.

→ The ferry schedule is available at www.capri.com/en/ferry-schedule

Getting around at Capri

Getting around at Capri
www.capri.com/en/come-muoversi

By car
Please note that during the tourist season (generally from Easter to the first weekend of November) non-resident vehicles are not allowed to circulate on the island of Capri. It is advisable to leave cars in one of the attended car parks close to the points of embarkation.

Directions between the two locations

From Palazzo dei Congressi to Hotel La Residenza:
You start at Via Sella Orta in Capri and head towards Via Vittorio Emanuele. Leave Via Sella Orta and turn left into Via Vittorio Emanuele. Leave Via Vittorio Emanuele and head straightforward onto Via Federico Serena. [about 5 minutes]

From Hotel La Residenza to Palazzo dei Congressi:
You start at Via Sella Orta in Capri and head towards Via Vittorio Emanuele. Leave Via Sella Orta and turn left into Via Vittorio Emanuele. Leave Via Vittorio Emanuele and head straightforward onto Via Federico Serena. Leave Via Vittorio Emanuele and turn right into Via Sella Orto.

Further information

→ Directions to Capri island (by plane, car or train) www.capritourism.com/en/how-to-reach-capri

→ Map of the island www.capri.net/en/map

→ Tourist information www.capritourism.com

NOTES
ACCOMODATION

Please note that the room rates as well as the information on internet facilities (internet plugs, Wi-Fi etc.) are taken from the homepages of the listed hotels. Rates may vary from the prices listed below (e.g. during fairs) according to room availability and reservation date. Please contact the hotel directly to make your reservation.

Hotel Villa Sarah***
Prices: 95 - 225 € (incl. breakfast)
Address: Via Tiberio, 3/a, 80073 Capri (NA), IT
URL: www.villasarahcapri.com
Contact: www.villasarahcapri.com/en/info-request
Phone: +39 (0)81 8377 817
Fax: +39 (0)81 8377 215
Remarks: no information about internet connection available

Hotel Bristol***
Prices: 170 - 300 €
Address: Via Marina Grande, 217, 80073 Capri (NA), IT
URL: www.hotelbristolcapri.com
E-Mail: info@hotelbristolcapri.com
Phone: +38 (0)81 8376 144
Fax: +39 (0)81 8376 150
Remarks: Wi-Fi available for a fee

Capri Hotel Canasta***
Prices: 120 - 250 € (incl. breakfast)
Address: Via Campo di Teste, 6, 80073 Capri (NA), IT
URL: www.hotel-canasta.com
E-Mail: info@hotel-canasta.com
Phone: +39 (0)81 8370 561
Fax: +39 (0)81 8376 675
Remarks: Free Wi-Fi connection in rooms and common areas

La Piscina de La Vega***
Prices: 160 - 420 € (incl. breakfast)
Address: Via Ochlo Marino, 10, 80073 Capri (NA), IT
URL: www.hotellavega.it
E-Mail: info@lavega.it
Phone: +39 (0)81 8370 481
Fax: +39 (0)81 8370 342
Remarks: no information about internet connection available

Hotel La Certosella***
Prices: 200 - 300 € (incl. breakfast)
Address: Via Tragara, 13/15, 80073 Capri (NA), IT
URL: www.hotelcertosella.com
E-Mail: info@hotelcertosella.com
Phone: +39 (0)81 8370 713
Fax: +39 (0)81 8376 113
Remarks: Free Wi-Fi connection in the hall

La Residenza****
Prices: 180 - 1.010 € (incl. breakfast)
Address: Via Federico Sereno, 22, 80073 Capri (NA), IT
URL: www.laresidenzacapri.com
E-Mail: info@laresidenzacapri.com
Phone: +39 (0)81 8370 833
Fax: +39 (0)81 8377 564
Remarks: Free Wi-Fi connection in the common areas

Best Western Hotel Syrene****
Prices: 173 - 241 €
Address: Via Camerelle 51, 80073 Capri (NA), IT
URL: www.hotelsyrene.com
E-Mail: syrene.na@bestwestern.it
Phone: +39 (0)81 8370 102/522
Fax: +39 (0)81 8370 957
Remarks: Free Wi-Fi connection in hall

Hotel Capri****
Prices: 140 - 600 €
Address: Via Roma 71, 80073 Capri (NA), IT
URL: www.hotelcapri.it
E-Mail: hotelcapri@capri.it
Phone: +39 081 8370 003 / 8375 207
Fax: +39 081 8378 913
Remarks: Free Wi-Fi connection in rooms and common areas

Hotel Flora****
Prices: 200 - 310 € (incl. breakfast)
Address: Via Serena Federico, 80073 Capri (NA), IT
URL: www.floracapri.com
E-Mail: info@floracapri.com
Phone: +39 (0)81 8370 211
Fax: +39 (0)81 8378 949
Remarks: Wi-Fi connection

Hotel A Paziella****
Prices: 119 - 350 € (incl. breakfast)
Address: Via Fuorilovoado, 36, 80073 Capri (NA), IT
URL: www.apaziella.com
E-Mail: info@apaziella.com
Phone: +39 (0)81 8370 044
Fax: +39 (0)81 8370 085
Remarks: Wi-Fi zone in the hall, internet point

Hotel La Palma****
Prices: 335 - 375 €
Address: Via Vittorio Emanuele, 39, 80073 Capri (NA), IT
URL: www.lapalma-capri.com/index-2.html
E-Mail: info@lapalma-capri.com
Phone: +39 (0)81 8370 133
Fax: +39 (0)81 8376 966
Remarks: Free Wi-Fi connection in the hall

Hotel Luna S.R.L.****
Prices: 210 - 390 € (incl. breakfast)
Address: Viale Matteotti, 3, 80073 Capri (NA), IT
URL: www.lunahotel.com/en/index
E-Mail: luna@capri.it
Phone: +39 (0)81 8370 433
Fax: +39 (0)81 8377 459
Remarks: Wi-Fi available for a fee

Hotel La Floridiana****
Prices: 90 - 850 € (incl. breakfast)
Address: Via Campo di Teste 16, 80073 Capri (NA), IT
URL: www.lafloridiana-capri.com
E-Mail: info@lafloridiana-capri.com
Phone: +39 (0)81 8370 166
Fax: +39 (0)81 8370 434
Remarks: Wi-Fi Internet Point
General Information

Hotel Gatto Bianco**

Prices: 170 - 530 € (incl. breakfast)
Address: Via V. Emanuele, 32, 80073 Capri (NA), IT
URL: www.gattobianco-capri.com
E-Mail: h.gattobianco@capri.it
Phone: +39 (0)81 8370 446
Fax: +39 (0)81 8378 060
Remarks: Internet Wi-Fi connection

La Scalinatella**

Prices: 450 - 750 € (incl. breakfast)
Address: Via Tragara, 8, 80073 Capri (NA), IT
URL: www.scalinatella.com
E-Mail: info@scalinatella.com
Phone: +39 (0)81 8370 633
Fax: +39 (0)81 8378 291
Remarks: Wi-Fi internet connection is included in the room rates

Hotel La Minerva**

Prices: 80 - 450 € (incl. breakfast)
Address: Via Occhio Marino, 8, 80073 Capri (NA), IT
URL: www.laminervacapri.com
E-Mail: laminerva@capri.it
Phone: +39 (0)81 8377 067
Fax: +39 (0)81 8375 221
Remarks: Free Wi-Fi connection in rooms and common areas

Hotel Excelsior Parco**

Prices: 180 - 350 € (incl. breakfast)
Address: Via Mula, 14/16, 80073 Capri (NA), IT
URL: www.excelsiorparco.com/
E-Mail: info@excelsiorparco.com
Phone: +39 (0)81 8379 642
Fax: +39 (0)81 8378 483
Remarks: Free Wi-Fi in the rooms

Hotel Punta Tragara***

Prices: 550 - 2750 €
Address: Via Tragara, 57, 80073 Capri (NA), IT
URL: www.hoteltragara.it
E-Mail: info@hoteltragara.it
Phone: +39 (0)81 8370 844
Fax: +39 (0)81 8377 790
Remarks: Free Wi-Fi connection in rooms and common areas

Resort & Spa***deluxe

JW Marriott. Capri Tiberio Palace

Prices: 280 - 650 € (incl. breakfast)
Address: Via Tragara, 6, 6 - Capri (NA), IT
URL: www.tiberiopalace.com
E-Mail: info@tiberiopalace.com
Phone: +39 (0)81 9787 111
Remarks: ADSL line - Free Internet

Villa Marina Hotel & Spa***

Prices: 450 - 1550 € (incl. breakfast)
Address: Via Provinciale Marina Grande 191, 80073 Capri (NA), IT
URL: www.villamarinacapri.com
E-Mail: reservations@villamarinacapri.com
Phone: +39 (0)81 8376 630
Fax: +39 (0)81 8374 079
Remarks: Internet connection available in rooms and suites

BED & BREAKFASTS

Alano Bed & Breakfast

Prices: Single room: 65 - 90 €
Double room: 100 - 130 €
Triple room: 150 - 180 € (incl. breakfast)
Address: Via Alano di Sopra, 10, 80073 Capri (NA), IT
URL: www.capri.net/en/c/alano
E-Mail: giano@capri.it
Phone: +39 (0)81 8377 878
Cell: +39 (0)329 1115 749
Remarks: Wireless internet

Il Portico

Prices: Double room: 80 - 170 €
Triple room: 110 - 200 €
Address: Via Truglio, 1/c, 80073 Capri (NA), IT
URL: www.ilporticoicapri.com/EN/index.html
Phone: +39 (0)81 837 0523
Fax: +39 (0)81 0112 057
Cell: +39 (0)338 182 8700
Remarks: Wifi internet connection

HOSTEL

La Reginella

Prices: Single room: 110 - 120 €
Double room: 65 - 85 €
Address: Via Matermania, 36, Capri (NA), IT
URL: http://www.hostelworld.com/hosteldetails.php/La-Reginella/Capri/38533
E-Mail: info@hotellareginella.com
Phone: +39 (0)81 8370 500
Fax: +39 (0)81 8379 126
Remarks: Internet access

Further accommodation facilities in Capri are available at: www.capritourism.com/en/accommodation

A list of hostels in Capri can be found at: www.hostelworld.com
INFORMATION FOR AUTHORS AND ATTENDEES

ORAL PRESENTATIONS

Time slots: Presenting authors are allotted 15 minutes (12 minutes presentation plus 3 minutes for discussion). Please plan your presentation accordingly to meet the 15 minute maximum.

Presentation upload: Speakers are requested to upload their presentation to the computer in the meeting room well in advance to their talk.

Presentation format: Please bring your presentation on a USB mass storage, CD-ROM or DVD and include all video files. File formats: ppt, pptx and pdf. A Windows-based presentation computer will be provided.

For Mac users: To make sure your presentation is displayed correctly, please:
- bring your presentation as pdf-file with fonts embedded or
- restrict yourself to Arial/Times New Roman (not Times)/Courier New (not Courier)/Symbol/Windings when creating your ppt- or pptx-file.

Technical equipment: All technical equipment (presentation computer, video projector, sound system, laser pointer) will be available on-site. It is also possible to use your personal laptop.

POSTER PRESENTATIONS

Poster authors are requested to be present at their posters during the official poster session. Please prepare and print your poster in advance to the conference. Poster set-up and removal is in the responsibility of the authors. Any posters left on the boards at the close of the poster session will be discarded. Poster numbers will be displayed on the poster boards to show authors where to place their poster.

The posters should have a size of DIN A1 (594 x 841 mm) or DIN A0 (841 x 1189 mm) preferably in a portrait format (not landscape format). Double sided tape and similar pads will be provided by the organizer. The size of the poster boards is 90 cm (width) x 200 cm (height).

The official poster session will be held on Monday 26th of September at 19.15 at the hotel la Residenza together with the welcome reception.

EOS REGISTRATION DESK

The EOS registration desk for both meetings - Optical Microsystems (OMS’11) and Lasers (ETML’11) - is located at the Palazzo dei Congressi, Via Sello Orta, 3, Capri, Italy. Please collect your material on Sunday, 25th of September from 13:00-18:00 at the Palazzo dei Congressi.

On-site registration hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, 25 Sept</td>
<td>13:00-18:00</td>
</tr>
<tr>
<td>Monday, 26 Sept</td>
<td>08:00-13:00</td>
</tr>
<tr>
<td></td>
<td>15:30-17:15</td>
</tr>
<tr>
<td>Tuesday, 27 Sept</td>
<td>09:00-13:00</td>
</tr>
<tr>
<td></td>
<td>15:30-19:00</td>
</tr>
<tr>
<td>Wednesday, 28 Sept</td>
<td>09:00-13:00</td>
</tr>
</tbody>
</table>

Information / Receipts / Confirmation of attendance / Cash payment

- Attendees requiring a payment receipt or confirmation of attendance may obtain these documents onsite at the EOS registration desk.
- Attendees paying by cash are requested to have the exact change ready in Euro.

REGISTRATION & FEES

At least one author of an accepted presentation is requested to register properly in advance to the conference. The full-time-registration for OMS’11 and ETML’11 includes admission to both Topical Meetings, a digest CD-ROM with the complete volume of accepted abstracts of both Topical Meetings and lunches on the 26 and 27 September.

<table>
<thead>
<tr>
<th>Registration category</th>
<th>Late/on-site fee (from 13 Sept.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-bird registration for members</td>
<td>520 € incl. 19% VAT</td>
</tr>
<tr>
<td>Early-bird registration for non-members</td>
<td>570 €</td>
</tr>
<tr>
<td>Early-bird registration for student members</td>
<td>360 €</td>
</tr>
<tr>
<td>Early-bird registration for student non-members</td>
<td>370 €</td>
</tr>
<tr>
<td>Early-bird registration for one-day</td>
<td>330 €</td>
</tr>
</tbody>
</table>

PLEASE NOTE: Registrations from companies and non-university research institutes registered in EU countries (except Germany) are exempted from VAT, if VAT no. is given...
JOINT SESSIONS
There will be two joint sessions of the topical meetings Optical Microsystems (OMS’11) and Lasers (ETML’11).
The joint session on Terahertz will be taking place on Monday, 26 September, 10:00-12:45 at Sala Auditorium, Palazzo dei Congressi.
The joint session on Organic and nano lasers will be taking place on Monday, 26 September, 12:45-17:00 at Sala Auditorium, Palazzo dei Congressi.

EOS CONFERENCE DIGEST
The registration fee includes a CD-ROM with the complete volume of accepted abstracts (plenary, invited and contributed) of the two topical meetings - Optical Microsystems (OMS’11) and Lasers (ETML’11) (ISBN 978-3-00-033710-9).
Please note that the EOS does not publish conference proceedings with extensive papers. Authors who wish to publish in-depth papers are welcome to take advantage of the special publication offer for JEOS:RP (see the next paragraph). The publication offer for JEOS:RP is an option but no obligation.

JEOS:RP SPECIAL PUBLICATION OFFER
All attendees of Optical Microsystems (OMS’11) and Lasers (ETML’11) receive a 20% discount on the publication rate for JEOS:RP (www.jeos.org). The paper must be an original contribution that is connected to one of the conference topics and must be submitted by 2 December 2011.
Special publication rates: 280 € (for members) / 320 € (for non-members).

BEST STUDENT PRESENTATION AWARD
The best student oral contribution and the best student poster presentation of each EOS Topical Meeting in Capri 2011 - Optical Microsystems (OMS’11) and Lasers (ETML’11) - will be awarded a diploma and a prize sponsored by Springer. All student oral and poster contributions are eligible to the prize. The criteria for the award are relevance, originality, scientific merit and clarity.

WIFI ACCESS
Free WIFI access will be available at both conference locations. Please ask at the registration desk in the Palazzo dei Congressi for the password.

WHISKY UND SHORTBREAD TASTING
In 2012 the EOS Annual Meeting moves from Paris to Aberdeen. For this reason the Aberdeen Convention Bureau will offer a whisky und shortbread tasting for all attendees of OMS’11 and ETML’11. You will find it at the Patio of the Centro Congressi on Monday, 26 September from 17.00-18.30.

EOS ANNUAL GENERAL MEETING (AGM)
The Annual General Meeting (AGM) of the EOS will be held in conjunction with the two Topical Meetings on Tuesday, 27 September 2011, 18:30-19:30 in the Sala auditorium of the Palazzo dei Congressi.

EOS INTERNAL MEETING SCHEDULE
- ADVISORY COMMITTEE MEETING
 Location: Palazzo dei Congressi, Via Sella Orta, 3, Capri, Italy
 Room: Sala Azzurra
 Sunday, 25 September 15:00-17:00

- EXECOM MEETING
 Location: Palazzo dei Congressi, Via Sella Orta, 3, Capri, Italy
 Room: Sala Azzurra
 Sunday, 25 September 18:30-20:30

- BOARD MEETING
 Location: Palazzo dei Congressi, Via Sella Orta, 3, Capri, Italy
 Room: Sala Azzurra
 Monday, 26 September 13:00-15:00
SYNOPSIS

OµS’11 is the 4th edition of an international conference wholly dedicated to Optical Micro-Systems. It is organized by the European Optical Society (EOS) in the frame of its international Topical Meeting activity and will be held in Italy, 26th September 2011 - 28th September 2011, amidst the wonderful scenery of the Island of Capri.

A possible definition of an optical microsystem is a complex system, able to perform one or more sensing and actuation functions, where optical devices are integrated in a smart way with electronic, mechanical and sensing components by taking advantage of the progress in micro- and nano-technologies.

The increasing interest in this field arises from the expected applications that would significantly improve the quality of life. The list of possibilities offered by the optical microsystem enabling technologies is very long and seems to increase day by day. Optical-Micro-Systems will be at the base of the next generation not only of optical telecommunication networks and computers, but also for biotechnologies, environmental monitoring, sensors to improve safety in the avionic and automotive fields, health diagnostics and proteomic/genomic studies, imaging.

The conference programme will focus on fundamental as well as more applied topics. Microfluidic systems, optofluidic systems, photonic crystals, nonlinear and quantum optics in micro-devices, nanophotonic-based devices, silicon-based optoelectronics and MOEMS, microsensors, biochips and the new characterization methods for materials and devices were among the hot topics of the conference.

LOCAL ORGANIZING COMMITTEE

- G. Coppola, L. de Stefano, M. Medugno, V. Mocella, L. Sirleto; CNR-IMM (IT)
- F. Merola, M. Paturzo, L. Miccio; CNR-INOA (IT)
- M. Alonzo, V. Bonacquisti, R. Passier; Università La Sapienza di Roma (IT)

PROGRAMME COMMITTEE

- Ady Arie, Tel-Aviv University (IL)
- Mario Nicola Armenise, Politecnico Di Bari (IT)
- Francesco Baldini, IFAC-CNR, IT
- Giuseppe Barillaro, Università di Pisa (IT)
- Mario Bertolotti, Università Di Roma “La Sapienza” (IT)
- Stefano Cabrini, The Molecular Foundry (US)
- Giuseppe Cocorullo, Università della Calabria (IT)
- Richard De La Rue, University of Glasgow (GB)
- Paolo De Natale, CNR-INOA (IT)
- Francesco G. Della Corte, Università Mediterranea di Reggio Calabria (IT)
- Didier Felbacq, UMR 5650 CNRS, Université Montpellier II, (FR)
- Maurizio Ferrari, IFN-CNR (IT)
- Kay Gastinger, NTNU Nanolab (NO)
- Simonetta Grilli, CNR-INOA (IT)
- Hans Peter Herzig, Ecole Polytechnique Fédérale de Lausanne, EPFL IMT OPT (CH)
- Massimo Inguscio, University of Florence (IT)
- Mario Iodice, Consiglio Nazionale delle Ricerche (IT)
- Bahram Jalali, UCLA Elec Engr (US)
- Pasquale Maddalena, Università di Napoli Federico II” (IT)
- Francesco Michelotti, Università Di Roma “La Sapienza” (IT)
- Wolfgang Osten, University of Stuttgart (DE)
- Stefano Pelli, IFAC-CNR (IT)
- Angela Piegari, ENEA (IT)
- Demetri Psaltis, Ecole Polytechnique Fédérale de Lausanne (CH)
- Roberta Ramponi, Politecnico Di Milano (IT)
- Graham Reed, University of Surrey (GB)
- Michael J. Sailor, UCSD Chemistry and Biochemistry (US)
- Ali Serpenguzel, Koç University (TR)
- Concita Sibilia, Università Di Roma “La Sapienza” (IT)
- Corrado Spinella, Consiglio Nazionale delle Ricerche (IT)
- Ralph Peter Tatam, Cranfield University (GB)
- Zeev Zalevsky, Bar-Ilan University (IL)

GENERAL CHAIRS

- Ivo Rendina, CNR-IMM (IT)
- Eugenio Fazio, Univ. La Sapienza di Roma, IT
- Pietro Ferraro, CNR-INOA, IT

OµS’11 is organized in cooperation with the Italian Branch of the EOS:
PLENARY SPEAKERS

Monday, 26 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 9:00 - 10:00 | Quantum Cascade Lasers: widely tunable light sources from the mid-infrared to the far-infrared
| | Federico Capasso, Harvard University (US)
| | The design and operating principles of Quantum Cascade Lasers (QCLs) are reviewed along with recent developments in mid-infrared high power cw and broadband devices, far infrared devices, plasmonic lasers and applications to spectroscopy. |

Tuesday, 27 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 9:00 - 9:40 | Surface plasmon resonance biosensors: from concept to device
| | Jiri Homola, Institute of Photonics and Electronics, Prague (CZ)
| | In this work we discuss several recently developed surface plasmon resonance (SPR) biosensors with emphasis on the integration of sensor hardware, microfluidics and biological elements for rapid, sensitive and specific detection of chemical and biological species. |

Wednesday, 28 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 9:00 - 9:40 | Optical Sculpting: advanced beam shaping and applications
| | Kishan Dholakia, University of St. Andrews (GB)

INVITED SPEAKERS

Monday, 26 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 11:30 - 12:00 | Quantum Cascade Resonators as versatile, narrow-linewidth laser sources across the far infrared
| | Miriam Serena Vitiello, National Research Council (IT)
| | Recent results on the measurement of the intrinsic linewidth and on the analysis of the frequency noise features of Terahertz Quantum Cascade Lasers (QCLs) will be discussed, together with their potential in polarization spectroscopy experiments addressed to high sensitivity molecular detection. Novel approaches to guide with almost unitary efficiency, THz QCL micro-ring resonator with the low-loss optical modes of hollow waveguides will be reviewed. |

15:30 - 16:00 | Deterministic semiconductor quantum wire and dot systems for nanophotonics applications
| | Eli Kapon, Ecole Polytechnique Federale de Lausanne (CH)
| | Epitaxial growth on patterned substrates is employed in producing site-controlled InGaAs/(Al)GaAs QDs and QWRs of high optical quality. Generation of single- and entangled photons, deterministic integration with photonic crystal cavities and realization of low threshold QWR lasers are illustrated with the approach. |

10:00 - 10:30 | Coherence effects in full-field optical coherence tomography
| | Ibrahim Abdulhalim, Ben Gurion University (IL)
| | The interplay between spatial and temporal coherence in full field optical coherence tomography and its effect on the system performance will be reviewed. Theoretical and experimental results are presented demonstrating the advantages of FF-OCT when optimum coherence conditions are carefully chosen. |
Invited Speakers

Monday, 26 September 2011 - continued

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker, Institution, Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 - 11:00</td>
<td>Lensfree On-Chip Microscopy and Tomography
Aydogan Ozcan, UCLA (US)
We review our recent progress on computational lensfree on-chip microscopy and tomography techniques for biomedical imaging applications.</td>
<td>Sala Azzurra, Palazzo dei Congressi</td>
</tr>
<tr>
<td>11:45 - 12:15</td>
<td>Best of both worlds: combined optical and acoustic trapping for optical characterization or for microfluidic applications
Monika Ritsch-Marte, Medical University of Innsbruck (AT)
Acoustic and optical trapping differ largely in their scaling, e.g. wavelength to particle size. This allows either modality to be used to compensate for the weaknesses of the other, which offers huge advantages in holding specimens for optical characterization or in the preparation for microfluidic sorting.</td>
<td>Sala Azzurra, Palazzo dei Congressi</td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td>Laser-Induced Thermal Effects on Optical and Structural Properties of Silicon Nanocrystals
Leonid Khriachtchev, University of Helsinki (FI)
Silicon nanostructures are promising for photonic applications. We describe here a series of experimental data on optical and structural characterization of annealed SiO(_x) (x < 2) and Si/SiO(_2) superlattice films containing Si nanocrystals. The effect of spectral filtering of photoluminescence observed in these absorbing films allows to measure the optical properties. The 1.5-eV photoluminescence of these materials shows systematic correlations with the optical and structural properties and the chemical composition. Our data show that Si nanocrystals are not a direct light-emission phase in these materials supporting the defect-based mechanism of the light emission.</td>
<td>Sala Azzurra, Palazzo dei Congressi</td>
</tr>
</tbody>
</table>

Tuesday, 27 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker, Institution, Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45 - 10:15</td>
<td>Nonlinear optical holography
Demetri Psaltis, Ecole Polytechnique Fédérale de Lausanne (CH)
Holography is a well established technique in the linear regime for three dimensional imaging. We show here how to extend it to reconstruct objects in nonlinear and/or scattering media.</td>
<td>Sala Auditorium, Palazzo dei Congressi</td>
</tr>
<tr>
<td>11:30 - 12:00</td>
<td>Single Molecule Biophysics and NanoAssembly with Optofluidic Trapping
David Erickson, Cornell University (US)
I will present our recent work on the optical trapping and manipulation of single proteins and the assembly of nanomaterials using the near-field of integrated photonic devices. Device design, materials and recent achievements will all be overviewed.</td>
<td>Sala Auditorium, Palazzo dei Congressi</td>
</tr>
<tr>
<td>12:45 - 13:15</td>
<td>Liquid microdroplets on a superhydrophobic surface: A promising system for optofludics research
Alper Kiraz, Koç University (TR)
Novel spectral tuning techniques, and organic light emitting device concepts developed using microdroplets on a superhydrophobic surface will be summarized. Recent experiments on contact angle measurements using vibrational modes of the microdroplets will also be discussed.</td>
<td>Sala Auditorium, Palazzo dei Congressi</td>
</tr>
</tbody>
</table>
Tuesday, 27 September 2011 - continued

9:45 - 10:15
Sala Azzurra, Palazzo dei Congressi

3D structured organic microcavities: mode confinement, room temperature lasing and plasmon-polariton modes
Hartmut Froeb,
Technical University Dresden (DE)

We report on spatial, temporal, and spectral characteristics of low-threshold roomtemperature organic dielectric microcavity lasers. The further decrease of dimensionality is realised by lateral structuring of the active resp. an additional metal layer or by all-optically controlled patterning of excitation. New hybrid plasmon-polariton modes were obtained.

Wednesday, 28 September 2011

9:45 - 10:15
Sala Auditorium, Palazzo dei Congressi

Complex Aperiodic Nanophotonics: Engineering complexity on Optical Chips
Luca Dal Negro,
University of Boston (US)

I will focus on the broadband enhancement of optical fields for multi-frequency light sources, plasmon enhanced photodetectors and optical biosensors. The applications of DANS to the enhancement of nonlinear interactions on optical chips will also be discussed. Finally, our recent work on circularly symmetric light scattering, phase vortices, and planar diffraction in photonic-plasmonic aperiodic spirals with circular Fourier space will be reviewed, and its impact for the design of broadband energy harvesting elements for thin-film solar cells will be discussed.

9:45 - 10:15
Sala Azzurra, Palazzo dei Congressi

Retardagraphy and its application to optical mass-storage
Tokohiko Yatagai,
Utsunomiya University (JP)

A technique for recording the retardance of an optical anisotropic object is proposed. The retardance pattern is converted into a polarization pattern using a quarter-wave plate and recorded on a polarization-sensitive medium. This method is called retardagraphy, which will be employed in optical mass-storage.
SYNOPSIS

The European Optical Society (EOS) is proud to present their second topical Meeting on Lasers to be held in Italy, 26th - 28th September 2011, at the Island of Capri, Italy.

Laser physics and technology is a very diverse field in rapid development and of utmost importance for technological development in the 21st century. Advances in semiconductor lasers, fibre lasers, solid-state lasers, parametric devices and nonlinear frequency conversion provide powerful tools for an increasingly broad range of applications including spectroscopy, metrology, remote sensing, communications, entertainment and display technology, material processing, astronomy, biology and life sciences.

Europe has a strong position in the field of laser physics and technology, and the aim of this meeting is to further strengthen this position.

The conference programme will focus on fundamental as well as more applied topics. The major subjects will be: Semiconductor lasers, quantum-dot lasers, diode-pumped lasers, fiber lasers, nonlinear frequency conversion, parametric devices, ultrafast lasers, materials for lasers and nonlinear optics.

PROGRAMME COMMITTEE

- Peter Andersen, Technical University Denmark (DK)
- Giulio Cerullo, Politecnico di Milano (IT)
- Frédéric Druon, Laboratoire Charles Fabry de l’Institut d’Optique (FR)
- Majid Ebrahim-Zadeh, ICFO (ES)
- Günter Huber, Universität Hamburg (DE)
- Ivo Montrosset, Politecnico di Torino (IT)
- Joerg Neumann, Laser Zentrum Hannover e.V. (DE)
- Markus Polinau, University of Twente (NL)
- Edik Rafailov, University of Dundee (GB)
- Irina Sorokina, NTNU (NO)
- Fredrik Laurell, Royal Institute of Technology, KTH (SE)

Organized in cooperation with the Swedish Branch of the EOS:

JOURNAL OF THE EUROPEAN OPTICAL SOCIETY
RAPID PUBLICATIONS

Discounted publication rates for attendees of ETML’11

The paper submitted must be an original contribution that is connected to the topics of this EOS event. All submissions will be reviewed against JEOS:RP’s regular high standards for physical insight, quality and novelty.

Journal Management Contact: Silke Kramprich | Phone: +49-511-2788-317 | Email: jeos-rp@myeos.org

Published by the European Optical Society

Paper submission deadline: 02 December 2011

Special publication rates:
- 320 € (non-member rate)
- 280 € (member rate)

www.jeos.org
Monday, 26 September 2011

Quantum Cascade Lasers: widely tailorable light sources from the mid-infrared to the far-infrared

Federico Capasso, Harvard University (US)

The design and operating principles of Quantum Cascade Lasers (QCLs) are reviewed along with recent developments in mid-infrared high power cw and broadband devices, far infrared devices, plasmonic lasers and applications to spectroscopy.

Quantum Cascade Resonators as versatile, narrow-linewidth laser sources across the far infrared

Miriam Serena Vitiello, National Research Council (IT)

Recent results on the measurement of the intrinsic linewidth and on the analysis of the frequency noise features of Terahertz Quantum Cascade Lasers (QCLs) will be discussed, together with their potential in polarization spectroscopy experiments addressed to high sensitivity molecular detection. Novel approaches to guide with almost unitary efficiency, THz QCL micro-ring resonator with the low-loss optical modes of hollow waveguides will be reviewed.

Deterministic semiconductor quantum wire and dot systems for nanophotonics applications

Eli Kapon, Ecole Polytechnique Federale de Lausanne (CH)

Epitaxial growth on patterned substrates is employed in producing site-controlled InGaAs/(Al)GaAs QDs and QWRs of high optical quality. Generation of single- and entangled photons, deterministic integration with photonic crystal cavities and realization of low threshold QWR lasers are illustrated with the approach.

Tuesday, 27 September 2011

Diode-pumped single crystal fiber lasers

François Balembois, Institut d’Optique (FR)

We will give a review of our research work concerning diode-pumped single crystal fibre lasers. The gain medium is YAG doped with Nd, Yb or Er. The lasers developed demonstrate high gain coefficients (higher than 30), high peak power (MW) and significant average power (ten’s of W) in pulsed oscillators and amplifiers.

Passively Q-switched Lasers for Spaceborne Applications

Dietmar Kracht, Laser Zentrum Hannover e.V. (DE)

For the Mars Organic Molecule Analyzer instrument’s technology preparation program in the framework of the ExoMars mission, a compact prototype model of a passively Q-switched pulsed UV laser system with a pulse energy of >250 µJ at a pulse duration of around 1 ns and a wavelength of 266 nm has been developed and environmentally tested.
INVITED SPEAKERS

Tuesday, 27 September 2011 - continued

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker</th>
<th>Institution</th>
<th>Location</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30 - 12:00</td>
<td>Ultrafast and high power thin disk lasers</td>
<td>Christian Kraenkel</td>
<td>Hamburg University (DE)</td>
<td>Hotel la Residenza</td>
<td>We review the recent developments of ultrafast thin disk laser oscillators with unrivaled average output powers exceeding 140 W and pulse energies of several 10 μJ. This rapid progress was supported by the development of tailored gain materials, supporting high efficiencies or pulse durations below 200 fs.</td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td>Ceramic lasers and laser materials toward giant micro-photonics</td>
<td>Takunori Taira</td>
<td>Institute for Molecular Science (JP)</td>
<td>Hotel la Residenza</td>
<td>Transparent laser ceramics have been demonstrated to offer tremendous processing and design advantages in diode pumped solid-state laser field. After the review of the ceramic lasers, we'd like to discuss the next generation of high performance giant lasers as state-of-the-art micro solid-state photonics.</td>
</tr>
<tr>
<td>16:00 - 16:30</td>
<td>Tm and Ho femtosecond lasers around 2um</td>
<td>Alexander A. Lagatsky</td>
<td>University of St. Andrews (GB)</td>
<td>Hotel la Residenza</td>
<td>Recent progress in the development of ultrashort-pulse crystalline lasers operating around the 2-μm spectral region is reported. In particular, efficient femtosecond operation in Tm, Ho co-doped and Tm-doped double tungstate crystals is achieved using a SESAM mode-locking approach.</td>
</tr>
</tbody>
</table>

Wednesday, 28 September 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker</th>
<th>Institution</th>
<th>Location</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 9:30</td>
<td>Mode-locked VECSEls</td>
<td>Anne Tropper</td>
<td>Southampton University (GB)</td>
<td>Hotel la Residenza</td>
<td>Optically-pumped surface-emitting external cavity quantum well lasers combine high average power with good beam quality, and readily exhibit passive mode-locking under the influence of an intracavity Semiconductor Saturable Absorber Mirror (SESAM). These lasers have been observed to generate near transform-limited optical pulses of 60-fs duration.</td>
</tr>
<tr>
<td>9:30 - 10:00</td>
<td>High-power ultrafast quantum-dot edge-emitting lasers</td>
<td>Maria Ana Cataluna</td>
<td>University of Dundee (GB)</td>
<td>Hotel la Residenza</td>
<td>This talk will cover our recent progress on ultrafast InAs/GaAs quantum-dot edge-emitting lasers, particularly highlighting the generation of ultrashort pulses with record-high peak power from monolithic tapered lasers, as well as high-energy and low-noise pulse generation, at low pulse repetition rates, from external-cavity lasers.</td>
</tr>
</tbody>
</table>
ETML'11 & OµS'11 at a Glance

LASERS

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 - 11:00</td>
<td>TERAHERTZ (JOINT SESSION)</td>
</tr>
<tr>
<td>11:30 - 12:45</td>
<td>TERAHERTZ (JOINT SESSION) - continued</td>
</tr>
<tr>
<td>12:45 - 13:30</td>
<td>ORGANIC AND NANO LASERS (JOINT SESSION)</td>
</tr>
<tr>
<td>13:30 - 15:30</td>
<td>Lunch break</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>ORGANIC AND NANO LASERS (JOINT SESSION) - continued</td>
</tr>
</tbody>
</table>

OµS I

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 - 11:30</td>
<td>OPTICAL IMAGING AND CHARACTERIZATION METHODS</td>
</tr>
<tr>
<td>11:30 - 11:45</td>
<td>Coffee break</td>
</tr>
<tr>
<td>11:45 - 13:30</td>
<td>OPTICAL IMAGING AND CHARACTERIZATION METHODS - continued</td>
</tr>
<tr>
<td>13:30 - 15:30</td>
<td>Lunch break</td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>OPTICAL IMAGING AND CHARACTERIZATION METHODS - continued</td>
</tr>
</tbody>
</table>

OµS II

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 10:00</td>
<td>PLENARY TALK</td>
</tr>
</tbody>
</table>

Quantum Cascade Lasers: widely tunable light sources from the mid-infrared to the far-infrared
F. Capasso, School of Engineering and Applied Sciences, Harvard University (US).

TUESDAY, 27 September

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 11:00</td>
<td>DIODE-PUMPED LASERS AND MODE-LOCKED LASERS</td>
</tr>
<tr>
<td>11:00 - 11:30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>11:30 - 13:15</td>
<td>THIN DISC AND HIGH ENERGY LASERS</td>
</tr>
<tr>
<td>13:15 - 15:30</td>
<td>Lunch break</td>
</tr>
</tbody>
</table>

Surface plasmon resonance biosensors: from concept to device
J. Homola, Institute of Photonics and Electronics, Prague (CZ).

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45 - 11:00</td>
<td>BIOPHOTONICS, MICROFLUIDICS AND OPTOFUIDICS</td>
</tr>
<tr>
<td>11:00 - 11:30</td>
<td>Coffee break</td>
</tr>
<tr>
<td>11:30 - 13:45</td>
<td>BIOPHOTONICS, MICROFLUIDICS AND OPTOFUIDICS - continued</td>
</tr>
<tr>
<td>13:45 - 15:45</td>
<td>Lunch break</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45 - 11:15</td>
<td>OPTICAL MICROSYSTEMS AND MICROSENSORS</td>
</tr>
<tr>
<td>11:15 - 11:45</td>
<td>Coffee break</td>
</tr>
<tr>
<td>11:45 - 13:15</td>
<td>OPTICAL MICROSYSTEMS AND MICROSENSORS - continued</td>
</tr>
<tr>
<td>13:15 - 15:45</td>
<td>Lunch break</td>
</tr>
<tr>
<td>Lasers</td>
<td>OµS I</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TUESDAY, 27 September - continued</td>
<td></td>
</tr>
<tr>
<td>15:30 - 17:00</td>
<td>15:45 - 16:45</td>
</tr>
<tr>
<td>LASER MATERIALS AND MID-IR</td>
<td>PLASMONICS, PHOTONIC CRYSTALS AND METAMATERIALS</td>
</tr>
<tr>
<td>17:00 - 17:30 Coffee break</td>
<td>16:45 - 17:30 Coffee break</td>
</tr>
<tr>
<td>17:30 - 18:45</td>
<td>17:30 - 18:15</td>
</tr>
<tr>
<td>OPTICAL PARAMETRIC OSCILLATORS</td>
<td>PLASMONICS, PHOTONIC CRYSTALS AND METAMATERIALS - continued</td>
</tr>
<tr>
<td>18:30 - 19:30</td>
<td></td>
</tr>
<tr>
<td>ANNUAL GENERAL ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>20:30 Conference Dinner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEDNESDAY, 28 September</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 9:00 - 11:00 | 9:00 - 9:40 PLENARY TALK | **Title tba**
K. Dholakia; University of St. Andrews (GB). |
| SEMICONDUCTOR LASERS | | |
| 9:45 - 11:15 | 9:45 - 11:15 | APPLICATION OF OPTICAL SYSTEMS - continued |
| PLASMONICS, PHOTONIC CRYSTALS AND METAMATERIALS - continued | APPLICATION OF OPTICAL SYSTEMS - continued | |
| 11:15 - 11:45 Coffee break | 11:15 - 11:45 Coffee break | |
| 11:45 - 12:30 POST-DEADLINE SESSION | 11:45 - 12:30 POST-DEADLINE SESSION | |
| **END OF EOS TOPICAL MEETINGS** | | |

Notes
Monday, 26 September

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45</td>
<td>Welcome by the chairs</td>
</tr>
<tr>
<td>09:00</td>
<td>Lasers</td>
</tr>
<tr>
<td>10:00</td>
<td>Student Presentation</td>
</tr>
<tr>
<td>10:00</td>
<td>Surface emitting Terahertz Photonic Crystal Quantum Cascade Laser realized by Bragg boundary condition</td>
</tr>
<tr>
<td>10:15</td>
<td>Broadband modeless cw semiconductor laser: design and coherence properties</td>
</tr>
<tr>
<td>10:30</td>
<td>Generation of Dual-Mode from a Quantum Dot Diode Laser for THz DFG</td>
</tr>
<tr>
<td>10:45</td>
<td>Vectorial control of the THz field in multilayered graphene</td>
</tr>
<tr>
<td>11:00</td>
<td>Coffee break</td>
</tr>
<tr>
<td>10:00</td>
<td>Optical Imaging and Characterization Methods</td>
</tr>
<tr>
<td>10:00</td>
<td>Coherence effects in full-field optical coherence tomography</td>
</tr>
<tr>
<td>10:30</td>
<td>Lensfree On-Chip Microscopy and Tomography</td>
</tr>
</tbody>
</table>

Quantum Cascade Lasers: widely tailorable light sources from the mid-infrared to the far-infrared

F. Capasso, School of Engineering and Applied Sciences, Harvard University (US).

The design and operating principles of Quantum Cascade Lasers (QCLs) are reviewed along with recent developments in mid-infrared high power cw and broadband devices, for infrared devices, plasmonic lasers and applications to spectroscopy. [4642]
11:00 Imaging fibre bundles in optical coherence tomography
H.D. Ford, A. Saglam, R.P. Tatam; Cranfield University, Department of Engineering Photonics (UK).
The properties of imaging fibre bundles have been investigated with regard to their proposed use in optical coherence tomography applications (OCT). Fibre bundles allow images to be obtained without spatial scanning at the probe tip. Results will be presented from single-fibre and bundle-based Cranfield OCT systems. [4626]

11:15

STUDENT PRESENTATION

Automatic algorithm for the detection and 3D tracking of biological particles in Digital Holographic Microscopy
G. Di Caprio¹, A. El Mallahi², P. Ferraro³, G. Coppola¹, F. Dubois²; ¹Institute for the Microelectronics and Microsystems – CNR (IT), °Université Libre de Bruxelles – Microgravity Research Center (BE), °National Institute of Optics - CNR (IT).
We propose an approach for the detection and the three dimensional tracking of particle flowing in a microfluidic channel by means of Digital Holographic Microscopy working in partial coherence. [4585]

11:45

Best of both worlds: combined optical and acoustic trapping for optical characterization or for microfluidic applications
M. Ritsch-Marte; Medical University of Innsbruck (AT).
Acoustic and optical trapping differ largely in their scaling, e.g. wavelength to particle size. This allows either modality to be used to compensate for the weaknesses of the other, which offers huge advantages in holding specimens for optical characterization or in the preparation for micro-fluidic sorting. [4670]

11:30-12:45

TERAHERTZ (JOINT SESSION) - continued
Chairs: tba

11:30 Quantum Cascade Resonators as versatile, narrow-linewidth laser sources across the far Infrared
M. Serena Vitiello, National Research Council (IT)
Recent results on the measurement of the intrinsic linewidth and on the analysis of the frequency noise features of Terahertz Quantum Cascade Lasers (QCLs) will be discussed, together with their potential in polarization spectroscopy experiments addressed to high sensitivity molecular detection. Novel approaches to guide with almost unitary efficiency, THz QCL micro-ring resonator with the low-loss optical modes of hollow waveguides will be reviewed.
12:15

Intersubband Plasmon THz Source based on InGaAs Quantum Wells
E. Gornik1, J. Silva de Sousa, A. Pflier1, M. Coquelin1, A.M. Andrews1, P. Klang1, P. Bakshi1, G. Strasser1; 1Center for Micro- and Nanostructures and Institute for Solid-State Electronics, Vienna University of Technology (AT), 2Physics Department, Boston College (US).

The controlled excitation of Plasma instabilities (PI) in semiconductors offers the possibility of coherent THz sources. If an excitation of two intersubband plasmons (ISP), which get under special conditions in resonance, takes place, a PI can occur. For the interaction of two resonant plasmon modes a special nanostructure was designed. [4492]

12:30

Large enhancement of second-order optical nonlinearities in silicon nanophotonic waveguides by local plasma-activation
C. Matheisen1, T. Wohlbrink1, J. Bolten1, M. Waldow1, S. Savallich1, M. Nagel1, H. Kurz1,2; 1Institute of Semiconductor Electronics, RWTH Aachen University (DE), 2AMO GmbH (DE).

We present a novel, CMOS compatible approach for the local generation of second-order optical nonlinearities in silicon nanophotonic waveguides based on a plasma-mediated surface-activation. The functionality is demonstrated in terms of a miniaturized “THz fluorescent writing” using local difference frequency generation. [4540]

12:45-13:30

ORGANIC AND NANO LASERS (JOINT SESSION)

Chairs: IBA

12:45

Self-assembled microlasers fabricated by drop deposition of colloidal semiconductor core-shell nanorods
R. Krahne1, M. Zavelani-Rossi2, G. Lanszki2, I. Franchini2, S. Girard2, D. Pisignano3, L. Manna1; 1Italian Institute of Technology (IT), 2Politecnico di Milano (IT), 3National Nanotechnology Laboratory-CNR-Nanoscale (IT).

We fabricated self-assembled micro-lasers by controlled jet deposition onto planer glass substrates of dot-in-a-dot core-shell CdSe/CdS nanorods dissolved in toluene solution. Laser emission was observed both from core and from shell states upon optical pumping, with threshold values of the pump fluence as low as 0.2 mJ/cm². [4477]
QWR lasers are illustrated with the approach. A solid-state organic thin-film laser with intracavity frequency doubling is reported. Tunable ultraviolet emission from 309 to 322 nm is achieved from a vertical cavity surface-emitting organic laser, with 2% efficiency (1 µJ at 315 nm). [4513]

Deterministic semiconductor quantum wire and dot systems for nanophotonics applications
E. Kapon; Ecole Polytechnique Fédérale de Lausanne (CH).
Epitaxial growth on patterned substrates is employed in producing site-controlled InGaAs/AlGaAs QDs and QWRs of high optical quality. Generation of single- and entangled photons, deterministic integration with photonic crystal cavities and realization of low threshold QWR lasers are illustrated with the approach. [4673]

Silicon Nanoparticles coupled with Ultra-High-Q Whispering Gallery Microcavities
Y. Candéla; R. Pratibha Nalini; F. Gourbilleau; J.-B. Jager; V. Lefèvre-Reguiit; J. Hare;
1Laboratoire Kastler Brossel, CNRS, UPMC (FR); 2CIMAP, CNRS/CEA/Ensicaen/UCBN (FR); 3CEA Grenoble INAC/SP2M/SINAPS-Minatec (FR).
We study the emission of silicon nanoparticles embedded in fused silica microcavities. We report for the first time that the emission in ultra-high-Q cavities comes from the edge of the structure. [4564]
Monday, 26 September

Sala Auditorium, Palazzo dei Congressi

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 16:00 | **Stimulated Raman Scattering in Quantum Dots and Nanocomposites Silicon Based Materials**
M.A. Ferrara, I. Rendina, L. Sirleto; National Research Council (CNR), Istituto per la Microeletronica e Microsystems (IT).
Raman scattering in electrons-confined and photons-confined materials is a fascinating research field of great importance from both fundamental and applicative point of view. Concerning the fundamental one, there have been a number of investigations both experimental and theoretical, but the question is still 'open', while from an applicative point of view there are some important prospective for example to realize micro/nano source, with improved performances, based on stimulated Raman scattering. [4592]
| 16:15 | **Laser emission at 1060 nm in Nd^{3+} doped glass microspheres without coupling devices**
L.L. Martin, D. Navarro-Urrios, F. Ferrarese Lupi, C.J. Pérez-Rodríguez, P. Haro-González, I.R. Martín, N.E. Capuj; Universidad de la Laguna (ES).
Microspheres of Barium Titanate Silicate glass, doped with Nd^{3+} ions have been made and have achieved laser emission at 1064 nm when pumped at 514 nm using low pump power at room temperature and detecting without any coupling device. [4588]
| 16:30 | **Operation of Raman laser based on silicon bulk-crystal at temperature of 10 K**
V. Usinetskiy, O. Lux, H. Rhee, S. Schrader; H.J. Eichler; University of Applied Sciences Wildau, Engineering Physics (DE), 2TU Berlin - Institut für Optik und Atomare Physik (DE).
Raman laser operation based on silicon bulk crystal at a temperature of about 10 K was investigated both experimentally and numerically. The Raman laser produces radiation at 1.127 mm wavelength with a slope efficiency of 1.5 %. A strong effect of free-carrier induced lensing in silicon is observed. [4523]

OμS I

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 16:00 | **Scanning near field optical microscopy probes with adirectional asymmetries**
V. Lotito 1, 2, U. Sennhauser 1, C. Hafner 1; EMPA, Swiss Federal Laboratories for Materials Science and Technology, Electronics/Metrology Laboratory (CH), 2ETH Zurich, Laboratory of electromagnetic fields and microwave electronics (CH).
A spiral corrugation in an axisymmetric fully metal-coated near field probe allows the attainment of strong field localization under linearly polarized excitation with arbitrary orientation. Hence, high resolution is achievable without the need for an awkward radially polarized excitation or a linearly polarized input with a specific direction. [4528]
| 16:15 | **Hyperspectral Nanoscale Imaging with optical antennae on Scanning Probe Tips**
W. Bao 1, F. Intonti 2, V. Materazzo 2, F. Ribioli 2, D. Wiersma 2, S. Cabrini 1, P.J. Schuck 1, A. Weber-Bargioni 1; 1Molecular Foundry, Lawrence Berkeley National Laboratory (DE), 2European Laboratory for Non-Linear Spectroscopy (IT).
The concept of optical antennae to focus light well below the diffraction limit, while enhancing the optical near field several orders of magnitude has only been feasible due to the advancements in nano fabrication over the past few years. A lot of work has been done on various nano fabrication approaches of optical antennae and the determination of their resonance behavior, leading to novel mode-coupling schemes, antenna-coupled plasmonic waveguides, and resonators that separate near fields energetically as well as spatially on length scales well below the diffraction limit. [4575]
| 16:30 | **Laser Induced Breakdown Spectroscopy for Coal Characterization**
F. Barberis, E. Golinelli, S. Musazzi, U. Perini, G.A. Zanetta; Ricerca sul Sistema Energetico - RSE S.p.A. (IT).
Elemental analysis of coal samples, in connection with numerical models, allows to predict the slogging propensity of coals. This paper presents preliminary experimental results relevant to LIBS measurements carried out on properly prepared graphite based samples. [4485]

Sala Azzurra, Palazzo dei Congressi

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 16:00 | **Student Presentation**
LASERS OμS I OμS II

EOS Capri 2011 | www.myeos.org/events/capri2011

21
Monday, 26 September

Sala Auditorium, Palazzo dei Congressi

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:45</td>
<td>MEMS-based dynamic laser beam shaper and homogenizer</td>
</tr>
<tr>
<td></td>
<td>J. Masson¹, R. Bitterli², A. Bich³, W. Noell⁴, R. Voelkle⁵, K. Weible⁶, N.F. de Rooij⁷; ¹EPFL, SAMLAB (CH), ²SUSS MicroOptics SA (CH).</td>
</tr>
<tr>
<td></td>
<td>We present a dynamic laser beam shaper that can generate smooth flat-top and Gaussian intensity profiles. It consists of a 100% fill factor membrane, supported by beams or posts, which deforms dynamically to shape and smooth coherent light. The mirror array is fabricated over a scanning stage that enables interference averaging. [4507]</td>
</tr>
</tbody>
</table>

Sala Azzurra, Palazzo dei Congressi

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:45</td>
<td>Homogeneity Test of Glass Plates using Adaptive Frequency Comb Illumination in Fizeau Interferometry</td>
</tr>
<tr>
<td></td>
<td>J. Schwider¹, K. Mantel², ¹Institute of Optics, Information, and Photonics, University of Erlangen-Nürnberg (DE), ²Max Planck Institute for the Science of Light (DE).</td>
</tr>
<tr>
<td></td>
<td>Homogeneity tests with the help of Fizeau interferometers suffer from nested cavity geometries which cause severe disturbing fringe patterns. Broad band frequency comb illumination allows for the selection of single cavities out of the whole set. For unique homogeneity tests 4 interferograms can be adjusted using suitable combs. [4556]</td>
</tr>
</tbody>
</table>

Notes

- 17:00-18:30 Whisky und Shortbread Tasting at the patio of the Centro Congressi
- 19:15-20:30 Poster session and reception at the terrace of the hotel La Residenza
Tuesday, 27 September

9:00 - 11:00
DIODE-PUMPED LASERS AND MODE-LOCKED LASERS
Chairs: Anne Tropper

9:00
Diode-pumped single crystal fiber lasers
F. Balembois¹, J. Martial², D. Sangla¹, X. Delé¹, Y. Zaouter⁴, E. Mottay⁵, F. Drun¹, P. Georges¹, K. Lebboul¹, A. Brenier⁷, N. Aubry⁸, J. Didierjean⁹, D. Perrodin¹, J.-M. Fauville¹; ¹Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Université Paris-Sud (FR), ²Fiberlytics SAS, La Doua-Bâtiment l’Atrium (FR), ³Laboratoire de Physico-Chimie des Matériaux Luminescents, CNRS, UMR5620, Univ. de Lyon (FR), ⁴Amplitude Systemes (FR).

We will give a review of our research work concerning diode-pumped single crystal fibre lasers. The gain medium is YAG doped with Nd, Yb or Er. The lasers developed demonstrate high gain coefficients (higher than 30), high peak power (MW) and significant average power (ten's of W) in pulsed oscillators and amplifiers. [4495]

9:30
Mode-locked ytterbium-doped fiber laser operating in the positive dispersion regime tunable over the range 1045-1065 nm
A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli; University of Pavia, Department of Electronics (IT).

A mode-locked ytterbium-doped fiber laser operating in the normal dispersion regime has been demonstrated in a all-PM cavity. The laser is tunable over the wavelength range 1045-1065 nm with transform-limited pulse duration of 15 ps and repetition rate below 20 MHz. [4488]

9:45
Mode locking of Er fiber laser with electrooptical fiber modulator
M. Malinstrami, W. Margulis, O. Tarsa², V. Paskevicius⁹, F. Laurell¹; ¹Royal Institute of Technology (KTH), Dept of Applied Physics (SE), ²Acreo AB, Fiber Photonics (SE).

This paper demonstrates a self-starting mode-locked fiber laser that incorporates an electrooptical fiber modulator and exploits soliton compression for picosecond pulse generation. The ring laser runs at 1.3 MHz, the pulse duration is ~2 ps and the bandwidth ~1 nm. The laser cavity is all fiber-based and the fiber modulator stabilizes pulse formation. [4634]

Surface plasmon resonance biosensors from concept to device
J. Homola, Institute of Photonics and Electronics (CZ).

In this work we discuss several recently developed surface plasmon resonance (SPR) biosensors with emphasis on the integration of sensor hardware, microfluidics and biological elements for rapid, sensitive and specific detection of chemical and biological species. [4671]

9:00 - 9:40
PLENARY TALK
Chairs: tba

9:45 - 11:00
ΠΜS I

9:45 - 11:15
ΠΜS II

9:45
Biophotonics, microfluidics and optofluidics
Chairs: tba

9:45
Nonlinear optical holography
D. Psaltis; Ecole Polytechnique Federale de Lausanne (CH).

Holography is a well established technique in the linear regime for three dimensional imaging. We show here how to extend it to reconstruct objects in nonlinear and/or scattering media. [4669]

9:45
3D structured optical microcavities: mode confinement, room temperature lasing and plasmon-polariton modes

We report on spatial, temporal, and spectral characteristics of low-threshold room-temperature organic dielectric microcavity lasers. The further decrease of dimensionalality is realised by lateral structuring of the active resp. an additional metal layer or by all-optically controlled patterning of excitation. New hybrid plasmon-polariton modes were obtained. [4624]
10:00 **Student Presentation**
Femtosecond Single-Mode Diode-Pumped Cr:LiSAF Laser Mode-Locked with Single-Walled Carbon Nanotubes
A. Agnesi1, F. Pirzio1, E. Ugolotti1, S.Y. Choi2, F. Rotermund2; 1University of Pavia, Electronics Department (IT), 2Division of Energy Systems Research (KR).
We present a low threshold and low pump-power Cr:LiSAF laser, excited with an inexpensive single mode laser diode emitting 120 mW. This laser is passively mode-locked with new Saturable Absorber Mirrors (SAMs) based on carbon nanotubes. [4489]

10:15 **Invited Talk**
Passively Q-switched Lasers for Spaceborne Applications
D. Kracht, C. Kolleck, J. Neumann; Laser Zentrum Hannover e. V. (DE).
For the Mars Organic Molecule Analyzer instrument’s technology preparation program in the framework of the ExoMars mission, a compact prototype model of a passively Q-switched pulsed UV laser system with a pulse energy of >250 µJ at a pulse duration of around 1 ns and a wavelength of 266 nm has been developed and environmentally tested. [4620]

10:00 **Student Presentation**
Fabrication of microstructures by a new concept of 3D lithography
V. Vesnini, S. Cappola, A. Finizio, S. Grilli, F. Merallo, P. Ferraro; CNR, Istituto Nazionale di Ottica - Sezione di Napoli (IT).
We present a novel approach for fabricating a wide variety of soft solid-like microstructures, thus leading to a new concept in 3D lithography. A relatively easy to accomplish technique has been demonstrated for curing different transient stages of polymer fluids by rapid cross-linking of PDMS. [4589]

10:15 **Student Presentation**
Development and modelling of a microfluidic porous silicon array for optical sensing
E. Orabona1, J. Rea1, L. Rendina1, L. De Stefano1; 1Istituto per Microelettronica e Microsistemi - National Council of Research, Naples (IT).
We describe the fabrication and the characterization of a microfluidics assisted microarray based on nanostructured silicon for label-free biochemical optical sensing. The binding kinetics in the microfluidic system has been modelled and investigated by finite element simulations in order to optimize the performances. [4576]

10:30 **Student Presentation**
Hybrid-integrated optofluidic microparticle sensor using a vertical-extended-cavity surface-emitting laser
W. Schwarz1, A.J. Márquez del Pino1, D. Rimpi1, T. Mappes1, R. Michalzik1; 1Ulm University, Institute of Optoelectronics (DE), 2Karlsruhe Institute of Technology, Institute of Microstructure Technology (DE).
We report the integration of an electrically pumped GaAs-based oxide-confined vertical-extended-cavity surface-emitting laser and a microfluidic chip. Particles in the microchannels flow through the laser resonator and induce a change of the cavity resonance, thus allowing sensitive detection to trigger a subsequent sorting process. [4550]

10:15 **Student Presentation**
Light Emitting Polymer Nanofibers: Novel Microscopic Light Sources
A. Composeo1, S. Pagliara1,2; 1Istituto Nazionale di Ottica (INO), Rome (IT), 2Dipartimento di Scienze Fisiche, Università di Napoli “Federico II” (IT).
We report on chemical sensing with liquid fibers by rapid cross-linking of PDMS. We investigate the tunability, waveguiding, gain and polarization properties of the emission. The fibers are also integrated in prototype microfluidic system as micro-scale polarized light sources. [4584]

10:30 **Student Presentation**
Liquid droplet chemical sensors
G. Gagliardi1, S. Avino1, A. Giorgini1, P. Ferraro1, M. Capezzuto2, H. Wachter1, H.P. Lock1, P. De Nota1; 1CNR-Instituto Nazionale di Ottica (INO) (IT), 2Dipartimento di Scienze Fisiche, Università di Napoli “Federico II” (IT), 3Dept. of Chemistry, Queen’s University (CA).
We report on chemical sensing with liquid spherical microresonators. Free-space laser-beam excitation of whispering-gallery modes in oil droplets is presented. The potential of cavity ring-down absorption spectroscopy for detection of liquid analytes dissolved in the drop material is discussed. [4538]
10:45 Self-frequency doubling in Nd:YAB channel waveguides under CW-laser operation at 1.06 μm
E. Cantelar, N. Dong, J. Martínez de Mendivil, G. Ufante, J. Vázquez de Aldana, G.A. Torchia, F. Chen, D. Jaque; ¹Departamento de Física de Materiales (UCM), ²Universidad Autónoma de Madrid (ES), ³School of Physics, State Key Laboratory of Crystal Materials, Shandong University (CN), ⁴Departamento de Física Aplicada, Facultad de Ciencias Físicas, Universidad de Salamanca (ES), ⁵Centro de Investigaciones Ópticas, IC-C-Conicet (AR).
In this work, the ability of Nd:YAB buried channel waveguides fabricated by ultrafast laser inscription for green laser light generation under 808 nm pumping by self-frequency-doubling of the 1.06 μm laser line of Nd³⁺ ions is demonstrated. [4526]

10:45 Self-Induced Back-Action trapping: toward a dynamic conception of optical trapping
M.L. Juan, R. Quintin, Y. Pang, P. Effektor, R. Gordon, C. Chen, P. Van Der Per; ¹ICFO-Institut de Ciencies Fotoniques (ES), ²Department of Electrical and Computer Engineering, University of Victoria (CA), ³MEC vzw. (BE).
Physical and life sciences. Trapping has evolved from the classical optical tweezers, obtained with a strongly focused beam, to sub-diffractive traps taking advantage of plasmonics and subwavelength optics in general. Owing to the strong confinement, trapping of sub-micron particles have been achieved. Yet, while the approaches to produce the trapping potentials changed noticeably from classic tweezers to sub-diffractive traps, they all rely on a static conception of trapping. Indeed, the structures are optimized to produce a maximal field enhancement and confinement to enable trapping of always smaller particles. In this context we recently proposed the concept of Self-Induced Back-Action (SIBA) optical trapping. [4476]

11:00 Coffee break

11:30-13:15 THIN DISC AND HIGH ENERGY LASERS
Chairs: Dietmar Kracht

11:45 Biophotonics, Microfluidics and Optofluidics - continued
Chairs: Iba

11:30 Invited Talk
Ultrafast and high power thin disk lasers
We review the recent developments of ultrafast thin disk laser oscillators with univalued average output powers exceeding 140 W and pulse energies of several 10 μJ. This rapid progress was supported by the development of tailored gain materials, supporting high efficiencies or pulse durations below 200 fs. [4559]

11:45 Invited Talk
Single Molecule Biophysics and NanoAssembly with Optofluidic Trapping
D. Erickson; Cornell University (US).
I will present our recent work on the optical trapping and manipulation of single proteins and the assembly of nanomaterials using the near-field of integrated photonic devices. Device design, materials and recent achievements will all be overviewed. [4668]

1:15-11:45 Coffee break

11:45-13:15 OPTICAL MICROSYSTEMS AND MICROSENSORS - continued
Chairs: Iba

11:45 Invited Talk
Optical Measurement on a Small Aperture Liquid Lens
A refractive spherical water-air boundary surface was used as a liquid lens with variable radius of curvature. The lens mapped a line resolution target onto a detector behind it. To analyze the low pass behaviour in terms of spatial frequency an USAF1951 resolution target was used. [4598]
A novel interest of an electrode-less microfluidic platform used to dispense liquid nanodroplet and to grip and transport micro objects driven by piezoelectric effect is demonstrated. [4590]
Tuesday, 27 September

Hotel la Residenza

LASERS

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:45</td>
<td>The Lucia laser chain: An active-mirror based Yb:YAG diode pumped Solid State Laser (DPSSL) delivering 10 J at 2 Hz</td>
</tr>
</tbody>
</table>

13:00

Thermal limitations of volume Bragg gratings when used in lasers for spectral control

S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, F. Laurell, Royal Institute of Technology (KTH), Applied Physics (SE). We investigated the effect of absorption in volume Bragg gratings (VBGs) and the associated temperature effects that appear when they are used as mirrors in diode pumped solid-state lasers. The primary result is an uneven longitudinal temperature distribution that causes a reduction in the reflectivity and the spectral selectivity. [4609]

13:15 - 15:30 Lunch break

13:15

Photonic properties of centric diatom frustules: evolutionary advantages and technological applications

E. De Tommasi, L. De Stefano, I. Rea, I. Rendina, Istituto per la Microelettronica e Microsistemi (CNR) (IT). A summary of the main optical and photonic properties of diatom silica walls is presented, from photonic crystal behavior to photoluminescence properties, in view of possible technological applications, mainly in sensing and optical biosensing fields. Furthermore, we focus on the confinement properties of light transmitted by single valves of *Coscinodiscus wailesii* and other centric species. [4500]

13:30

Sub-micrometer plasmon hollow waveguides for chemical sensing applications

C. Ciminelli, F. Dell'Olio, C.E. Campanella, M.N. Armenise, Optoelectronics Laboratory, Politecnico di Bari (IT). An innovative sub-micrometer hollow waveguide serving as microfluidic channel is proposed in this paper. It exhibits a sensitivity value exceeding 2.3 and a confinement factor in the hollow region up to 99 %. [4648]

Sala Auditorium, Palazzo dei Congressi

OµS I

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:45</td>
<td>Liquid microdroplets on a superhydrophobic surface: A promising system for optofluidics research</td>
</tr>
</tbody>
</table>

13:15

Electro-optical modulating devices based on the CMOS-compatible technology of amorphous silicon

S. Rao, F.G. Della Corte, Università "Mediterranea" di Reggio Calabria, Department of Information Science, Mathematics, Electronics and Transportation (DIMET) (IT). We report results on a field-effect induced light modulation at $\lambda=1.55 \mu m$ in waveguide-integrated Fabry-Perot (FP) resonating cavities. The devices are realized with the hydrogenated amorphous silicon (a-Si:H) technology ensuring an easy back-end integration with standard CMOS Integrated Circuits. [4615]

13:30

Invited Talk

Cu/p-Si Schottky Barrier Based Near Infrared Photodetector

M. Catalano, L. Sirleto, M. Iodice, M. Giofrè, I. Rendina, G. Coppola, Istituto per la Microelettronica e Microsistemi (CNR) (IT). We propose a near infrared all-silicon integrated photodetector based on the internal photoemission effect. Device is characterized by a responsivity of 0.08 mA/W at 1550 nm for a reverse bias of 1 V, moreover, a bandwidth in the GHz range can be estimated. [4649]

13:00 - 15:45 Lunch break

OµS II

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:45</td>
<td>The Lucia laser chain: An active-mirror based Yb:YAG diode pumped Solid State Laser (DPSSL) delivering 10 J at 2 Hz</td>
</tr>
</tbody>
</table>

Sala Azzurra, Palazzo dei Congressi

LASERS

12:45

Cu/p-Si Schottky Barrier Based Near Infrared Photodetector

M. Catalano, L. Sirleto, M. Iodice, M. Giofrè, I. Rendina, G. Coppola, Istituto per la Microelettronica e Microsistemi (CNR) (IT). We propose a near infrared all-silicon integrated photodetector based on the internal photoemission effect. Device is characterized by a responsivity of 0.08 mA/W at 1550 nm for a reverse bias of 1 V, moreover, a bandwidth in the GHz range can be estimated. [4649]
using a SESAM mode doped double tungstate crystals is achieved operation in Tm,Ho co-supported. In particular, efficient femtosecond around the 2-μm region is realized near the 2-μm threshold of St. Andrews (GB).

15:30 Ceramic lasers and laser materials toward giant micro-phononics.

T. Taira, Institute for Molecular Science (JP).

Transparent laser ceramic has been demonstrated to offer tremendous processing and design advantages in diode pumped solid-state laser field. After the review of the ceramic lasers, we’d like to discuss the next generation of high performance giant lasers as state-of-the-art micro solid-state photonics. [4644]

16:00 Tm- and Ho-based femtosecond lasers for 2-μm region

A.A. Lagatsky, C.T.A. Brown, W. Sibbett, School of Physics and Astronomy, University of St. Andrews (GB).

Recent progress in the development of ultrashort-pulse crystalline lasers operating around the 2-μm spectral region is reported. In particular, efficient femtosecond operation in Tm, Ho co-doped and Tm-doped double tungstate crystals is achieved using a SESAM mode-locking approach. [4475]

15:45 Plasmonics, photonic crystals and metamaterials

We present the experimental study of a free-standing metallic guided-mode resonant structure, for band-pass filtering application in the mid-infrared wavelength range. Angularly resolved transmission spectra are shown. They reveal Fano-type resonance with a high transmission peak (78%). [4517]

16:15 Theory and implementation of the resonance domain photonics structures

M.A. Golub, O. Barlev, Y. Holzman, Tel Aviv University, Department of Electrical Engineering (IL).

Resonance domain periodic surface relief structures with the grating period slightly exceeding the wavelength are investigated theoretically and in experiments with direct e-beam writing. Elaborated generalization of the effective index theory to the diffractive structures predicts diffraction efficiencies approaching to 100%. [4521]

16:00 Laser sintering of nanocrystalline (nc)-TiO2 films for Dye Solar Cells (DSCs) fabrication: from process feasibility to high throughput

We fabricated Dye Solar Cells with nc-TiO2 film sintered via a 355 nm laser with power P varying from 1 W to 7 W. A 7.1% efficient laser sintered DSC is reported for the first time. We outline the characteristic parameters required from a laser system to carry out an efficient, energetically favorable and industrially applicable process. [4610]
LASERS

16:30
An overview of HoKLu(WO$_4$)$_2$ laser operating at ~2.1 µm

In this work, we present CW laser generation in HoKLu(WO$_4$)$_2$ crystals near 2.1 µm, primarily using Tm as sensitizer ion and subsequently by in-band pumping with a home made diode-pumped Tm laser and a laser diode stack, both sources operating at 1.94 µm. With Tm laser pumping, we achieved the maximum slope efficiency of the HoKLuW laser that amounted to ~55%. [4572]

16:45
Efficient core-pumped thulium-doped fibers for single frequency master oscillators working at 2000 nm band
P. Horziczko, P. Peterka, A. Dhar, I. Kasik, O. Podzakzy, V. Matejevc, Institute of Photonics and Electronics AS CR (CZ).

We have developed highly thulium (Tm$^3+$) doped fibers and demonstrated their application in single frequency master oscillators core-pumped at 1611 nm. Lasing wavelength was at 1944.6nm. The slope efficiency more than 20% was achieved and a lasing threshold was about 25mW. [4557]

17:30 - 17:30
Coffee break

17:30-18:45
OPTICAL PARAMETRIC OSCILLATORS

Chairs: Takunori Taira

17:30
Near-degenerate continuous-wave optical parametric oscillator
M. Vainio3, C. Oezan3, L. Halonen3.

Laboratory of Physical Chemistry, Department of Chemistry (FI), Centro de Metodología y Accreditación (FI), Politecnico (member of ParisTech) (FR).

We have studied the stability and tuning characteristics of a near-degenerate continuous-wave optical parametric oscillator (cw OPO). The OPO is singly resonant and based on a volume Bragg grating, which provides single-frequency operation at signal-idler difference frequencies as small as <100 GHz. [4600]

17:30
Tilted Bragg grating plasmonic sensors
K.R. Daly1, C. Holmes1, G. D'Alessandro1, J.C. Gates1, P.S.R. Smith1, School of Mathematics (UK), Optoelectronics Research Centre, University of Southampton (UK).

Plasmonic sensors formed by a tilted Bragg grating in a gold coated waveguide have many advantages with respect to standard Bragg grating sensors. In this paper we develop a comprehensive theory of their mode structure and compare it to experimental results. The model can be used to optimise the sensitivity of the device. [4547]

16:30
Application of silicon based metamaterials: Imaging, sensing and solar cell.

V. Maccio1, P. Dardano1, G. De Martino1, I. Rendina1, S. Cabrita1, I.M.I-CNRS sez. Napoli (IT), Molecular Foundry, Lawrence Berkeley National Laboratory (US).

In this paper we present how the extraordinary properties of the metamaterials allows a strong improvement of many photonic based devices, such as imaging with super-resolution, ultrasensitive sensors and a strong improvement of the light absorption in solar cell with metamaterial based top layer. [4603]

16:45
Scattering of plasmonic nanoantennae at air/Substrate interfaces
L. Rindorf, Danish Technological Institute (DK).

A modified formalism is presented for finite element simulation of plasmonic nanoantennas. The formalism simplifies the simulation as well as the theoretical correspondence to the simulations. The formalism is applied to gold bow-tie nanoantennas in 3D. [4580]

17:30 - 17:30
Coffee break

17:30-18:15
PLASMONICS, PHOTONIC CRYSTALS AND METAMATERIALS - continued

Chairs: Jba

17:30
Novel LED-based slim microoptical array projector for luminaires and display applications
A. Bräuer, M. Steier, P. Schreiber, P. Dannberg, B. Höfer, Fraunhofer Institute for Applied Optics and Precision Engineering IOF (DE).

The transmitted flux of common single-aperture projection optics scales with projector dimensions for a given light source brightness. This dependency prevents the realization of slim devices with high flux. We introduce a new multi-channel approach, called “array projection”. [4515]
17:45 Optical parametric oscillator in the red with high pulse energy and symmetrical far field

G. Rustad, Ø. Farsund; FFI (Norwegian Defence Research Establishment) (NO).

Red pulses with >30 mJ pulse energy and <1 nm spectral bandwidth have been demonstrated using a type 2 phase matched optical parametric oscillator pumped at 532 nm. A symmetrical signal beam with beam quality M² ~ 8 was obtained applying the principle of orthogonal critical planes with KTA and BBO crystals in the same resonator. [4567]

18:00 Continuous-wave mid-infrared optical parametric oscillator referenced to an optical frequency comb

M. Vainio¹,², M. Merimaa², L. Halonen¹; ¹Laboratory of Physical Chemistry, Department of Chemistry (FI), ²Centre for Metrology and Accreditation (FI).

A continuous-wave optical parametric oscillator (cw OPO) operating in the mid-infrared has been referenced to a visible/near-infrared optical frequency comb through its pump and signal beams. The cw OPO has been used for sub-Doppler absolute-frequency spectroscopy of the n3 band of methane. [4599]

18:15 Student Presentation

Pump-dependence of spurious cascaded upconversion in broadband optical parametric generation

M. Levenius, V. Pasiskevicius, F. Laurell, K. Gallo; KTH – Royal Institute of Technology, Department of Applied Physics (ES).

We report on the possibility to affect the direction of energy transfer of cascaded sumfrequency conversion processes associated to broadband parametric generation (OPG) in periodically poled MgO:LiTaO₃, by means of the OPG pump. This holds promise for a coherent control of the gain profiles of optical parametric generators and amplifiers. [4545]

17:45 Cutting-edge Materials: Novel Hybrid organic/inorganic 2D Photonic Quasi Crystals

L. Petri³, M. Rippa¹, M. Zannoni², L. Manna³, P. Marmille²; ¹Institute of Cybernetics “E. Caianiello” of CNR (IT), ²Fondazione Istituto Italiano di Tecnologia (IT), ³SPIN and Waves Group, Department of Engineering, University of Sannio (IT).

Photonic crystals (PhC) have fascinating optical properties lying somewhere between those of disordered and periodic structures. We report on nanoscale fabrication of 2D hybrid True-Morse PhCs consisting of air rods in an inorganic/organic nanocomposite. [4651]

18:00 Plasmonic-Photonic Resonances in Low Contrast Hybrid Metallo-Dielectric Quasi-crystals

A. Crescitelli, A. Ricciardi¹, M. Consales¹, C. Granata², E. Esposito¹, V. Galdi¹, A. Cusano¹; ¹Optoelectronic Division – Engineering Department, University of Sannio (IT), ²CNR-SPIN and Waves Group, Department of Engineering, University of Sannio (IT).

We show the evidence of both plasmonic and photonic resonances excited in low contrast hybrid metallo-dielectric quasi-crystal (QC) nanostructures. By comparison with periodic crystal (PC) structures with the same filling factor, a richer spectrum of resonant modes may be excited. The resonances can be tuned via high refractive index overlays and are sensible to nanolayers of low refractive index materials (SiO₂). [4504]

17:45 Underwater optical fiber hydrophones based on Fiber Bragg Gratings coated by a ring shaped overlay

M. Moccia¹, M. Consales¹, M. Pisco³, A. Iadicicco², S. Campopiano², M. Giordano², V. Galdi¹, A. Cusano¹; ¹Optoelectronic Division – Engineering Department, University of Sannio (IT), ²Department of Technology, University of Naples “Parthenope” (IT), ³Institute for Composite and Biomedical Materials, National Research Council (IT), ²CNR-SPIN and Waves Group, Department of Engineering, University of Sannio (IT).

In this work, we report the first evidence of the resonant behavior of underwater acoustic sensors constituted by a Fiber Bragg Grating (FBG) coated by a ring shaped overlay. Hydrophone response is provided via numerical simulations and experimental proofs, as well. [4493]

18:00 MOEMS devices designed and tested for future astronomical instrumentation in space

F. Zamkotsian, T. Vierd², L. Marchard²; ¹Laboratoire d’Astrophysique de Marseille (FR), ²Ecole Polytechnique Fédérale de Lausanne (CH), ³Thales Alenia Space (FR), ⁴European Space Agency (NL).

MOEMS devices could be integrated in next-generation astronomical instruments for space telescopes. They have the capability to tailor the incoming light in terms of object selection with programmable slit masks, wavefront control with microdeformable mirrors, and spectrum with programmable diffraction gratings. [4516]
Tuesday, 27 September

<table>
<thead>
<tr>
<th>Hotel la Residenza</th>
<th>Sala Auditorium, Palazzo dei Congressi</th>
<th>Sala Azzurra, Palazzo dei Congressi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASERS</td>
<td>µS I</td>
<td>µS II</td>
</tr>
<tr>
<td>18:30</td>
<td>Single and Dual Pulse Operation of Picosecond Intracavity Synchronously Pumped Optical Parametric Oscillator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Zavadilova(^1), V. Kubeček(^1), J.-C. Diels(^2), J. Sulc(^1); (^1)Czech Technical University in Prague (CZ), (^2)University of New Mexico, CHTM (US).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental investigation of instability of the bidirectional operation in the intracavity synchronously pumped optical parametric oscillator is reported. It was shown that, depending on the OPO resonator length detuning, different operational regimes of the OPO and also of the pump laser can be achieved.</td>
<td></td>
</tr>
<tr>
<td>18:30-19:30</td>
<td>Annual General Assembly</td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td>Conference Dinner</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9:45
Complex Aperiodic Nanophotonics:
Engineering complexity on Optical Chips
L. Dal Negro; University of St. Andrews (GB).
I will focus on the broadband enhancement
of optical fields for multi-frequency light
sources, plasmon enhanced photodetectors
and optical biosensors. The applications of
DANS to the enhancement of nonlinear in-
teractions on optical chips will also be dis-
cussed. Finally, our recent work on circularly
symmetric light scattering, phase vortices,
and planar diffraction in photonic-plasmonic
aperiodic spirals with circular Fourier space
and its impact for the design of broadband energy harvesting
elements for thin-film solar cells will be dis-
cussed. [4672]

9:45-11:15
PLASMONICS, PHOTONIC CRYSTALS AND
METAMATERIALS - continued
Chairs: tba

9:45
Optical Sculpting: advanced beam shaping and applications
K. Dholakia; University of St. Andrews (GB).

9:00-11:00
SEMICONDUCTOR LASERS
Chairs: Edik Rafailov

9:00
Mode-locked Vertical-External-Cavity Surface-Emitting Semiconductor Lasers
A.C. Tropper; University of Southampton, Physics and Astronomy (GB).
Optically-pumped surface-emitting external cavity quantum well lasers combine high
average power with good beam quality, and readily exhibit passive mode-locking
under the influence of an intracavity Semiconductor Saturable Absorber Mirror
(SESAM). These lasers have been observed to generate near transform-limited optical
pulses of 60 fs duration. [4643]

9:30
High-power ultrafast quantum-dot edge-emitting lasers
M.A. Cataluna, Y. Ding, D.R. Nikitichev, E.U. Rafailov; University of Dundee, School of
Engineering, Physics and Mathematics (GB).
This talk will cover our recent progress on ultrafast InAs/GaAs quantum-dot edge-
emitting lasers, particularly highlighting the generation of ultrashort pulses with record-
high peak power from monolithic tapered lasers, as well as high-energy and low-noise
pulse generation, at low pulse repetition rates, from external-cavity lasers. [4574]

10:00
Modelling external cavity quantum-dot mode-locked lasers: a new delayed differential
equation model
M. Rossetti, T. Xu, P. Bardella, I. Montrosset; Politecnico di Torino, DELEN (IT).
We propose a new model for external cavity quantum-dot mode-locked (ML) las-
ers, based on the numerical solution of delayed differential equations (DDE) cou-
pied to rate equations describing carrier dynamics in the active chip. ML instabilities
induced by multiple cavity resonances and the onset of harmonic ML solutions are de-
scribed. [4508]
<table>
<thead>
<tr>
<th>Hotel la Residenza</th>
<th>Sala Auditorium, Palazzo dei Congressi</th>
<th>Sala Azzurro, Palazzo dei Congressi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASERS</td>
<td>OµS I</td>
<td>OµS II</td>
</tr>
<tr>
<td>10:15</td>
<td>Broadly tunable plasmonic nanogap resonators or black plasmons</td>
<td>10:15</td>
</tr>
<tr>
<td></td>
<td>M. Bora, A. Chang, T. Bandi, Lawrence Livermore National Laboratory (US). We present plasmonic resonant structures that are widely tunable from ultra-violet to infrared frequencies with maximum absorbance > 95% at resonance due to a highly efficient coupling with incident light. In particular we discuss their behavior in the 400-800 nm visible range for photovoltaic applications (black plasmons).[4607]</td>
<td>A Versatile Linear Micromirror Array For Ultrashort Laser Pulse Shaping</td>
</tr>
<tr>
<td></td>
<td>10:15</td>
<td>W. Noell, S. Weber, J. Extermann, F. Jute, L. Bonacina, N.F. de Rooil, J.P. Wolf, École Polytechnique Fédérale de Lausanne (EPFL), SAMLAB (CH), GAP Photonics, Université de Genève (CH), Jen-optik Optical Systems GmbH (DE). Ultrashort laser pulses comprise a relatively large wavelength spectrum. Depending on the central wavelength, this spectrum can be modified by dispersive and phase shifting elements. We demonstrate a broadband fs-laser pulse shaper based on MEMS, which modifies the fs-pulse shape at UV and NIR wavelengths.[4642]</td>
</tr>
<tr>
<td>10:30</td>
<td>Free Space Optical Interconnects using Active Optical Metamaterials</td>
<td>10:30</td>
</tr>
<tr>
<td></td>
<td>K. Frenner, P. Schau, L. Fu, H. Schweizer, H. Giessen, W. Osten, Institute für Technische Optik, Universität Stuttgart (DE), 4th Physical Institute, Universität Stuttgart (DE). Free space optical interconnects as they are used e.g. for data routing and switching have been improved through the use of active optical metamaterials. This allows to control in high resolution the position of the foci of the interconnect.[4619]</td>
<td>An automated method to increase the numerical aperture of a digital holography recording set-up: challenges and achievements</td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>A. Pelagotti, M. Paturzo, M. Locatelli, A. Gebrude, P. Poggi, A. Finizio, P. Ferrara; CNR-INO Istituto Nazionale di Ottica (IT). A major issue for digital holography is the limited numerical aperture which is bound by the size of available sensors. This is even more severe with IR sensors. In order to increase the numerical aperture of such systems, we developed a technique to automatically record adjacent holograms and properly stitch them together.[4601]</td>
</tr>
<tr>
<td>10:45</td>
<td>Influence of the saturable absorber length on the mode locking regimes of two-section quantum-dot lasers: a numerical study</td>
<td>10:45</td>
</tr>
<tr>
<td></td>
<td>M. Rossetti, T. Xu, P. Bardella, I. Montrosset; Politecnico di Torino (IT). We apply a new delayed differential equation model to the simulation of quantum-dot mode-locked lasers. We show that, consistently with the experiments, increasing the saturable absorber to gain section length ratio, a significant pulse shortening is achieved. Insights on the gain/absorption dynamics leading to this effect are shown.[4630]</td>
<td>Folding Imaging optics into a wedge light-guide</td>
</tr>
<tr>
<td></td>
<td>10:45</td>
<td>A.R.L Travis, T. Large, N. Emerton; Microsoft Corporation (US). Projection and camera optics can image big screens onto micro-displays and sensor arrays but the optical path must be folded into a flat panel. A wedge light-guide does this but the light-guide itself must be folded in two if the active area is to fill the screen. We explain the problems and potential solutions.[4534]</td>
</tr>
</tbody>
</table>
11:00
Near-field calculation for non-spherical nanoparticle arrays in the framework of the T-matrix method
J. Glückstad, D. Palima; DTU Fotonik, Dept. of Photonics Engineering (DK).
Combining our GPC-technology with temporal focusing, we can precisely stimulate single neuronal processes, neurons or groups of neurons, despite the highly complex neuronal structures. Our recent results published in Nature Methods will be outlined and the exciting perspectives it provides for the emerging fields of neurophotonics and optogenetics. [4689]

11:30-12:30
POST-DEADLINE SESSION
Chairs: tba

11:30 - 11:45
Design of high modulation bandwidth DBR lasers exploiting detuned loading and photon-photon resonance effects
M. Vallone, P. Bardella, I. Montrosset; Politecnico di Torino, Dipartimento di Elettronica, (IT).
We propose a design procedure which exploits the detuned loading effect and the photon-photon resonance to obtain high modulation bandwidth DBR lasers. [4707]

11:45 - 12:00
Tunable quantum-dot mode-locked monolithic laser
D.I. Nikitchev1, M.A. Catalana1, Y. Ding1, I. Krestnikov2, D. Livshitz2, E.U. Rafailov1, I. Krestnikov1; 1University of Dundee, School of Engineering, Physics and Mathematics, (GB), 2Innolume GmbH, (DE).
We report tunability from 1245 nm to 1290 nm from a quantum-dot mode-locked monolithic laser, whereby the wavelength is controlled via the reverse bias applied to the saturable absorber. Throughout the tuning range, the pulse duration ranged between 3.9 ps and 11 ps, with an average power up to 23 mW. [4703]

11:00
Compressed sensing - based denoising algorithm of digital holograms recorded in microscope configuration
P. Memmolo1,2, I. Esnaola1, A. Finizio1, M. Paturzo1, P. Ferraro1, A.M. Tulino2; 1CNR - Istituto Nazionale di Ottica (IT), 2DIBET, Università degli Studi di Napoli “Federico II” (IT), 3Wireless Communication Theory Research, Bell Laboratories (US).
Compressed Sensing (CS) states that a signal admitting a sparse representation in some basis can be perfectly acquired using a low rate acquisition process that projects the signal onto a small set of vectors incoherent with the sparsity basis. Motivated by this idea, we propose to use CS as denoising algorithm in Digital Holography (DH) for efficient amplitude and phase reconstruction. [4583]

11:45 - 12:00
Spatio-temporal light shaping in 3D real-time
J. Glückstad, D. Pallina; DTU Fotonik, Dept. of Photonics Engineering (DK).
Combining our GPC-technology with temporal focusing, we can precisely stimulate single neuronal processes, neurons or groups of neurons, despite the highly complex neuronal structures. Our recent results published in Nature Methods will be outlined and the exciting perspectives it provides for the emerging fields of neurophotonics and optogenetics. [4689]
Wednesday, 28 September

Hotel la Residenza

| 12:00 - 12:15 | Post-deadline talk |
| --- | --- | --- |
| **LASERS** |
| **Generation of Continuous Wave THz Radiation from a Quantum-Dot Photomixer Device**
1School of Engineering, Physics and Mathematics, University of Dundee (GB), 2Ferdinand-Braun-Institute (DE).
The generation of continuous wave (CW) terahertz (THz) emission from a photomixer device based on a quantum-dot (QD) structure has been demonstrated. Two spatially combined distributed feedback (DFB) laser diodes (LD’s) with single longitudinal modes at 847nm and 850nm have been used as pump sources. [4701] |

| 12:15 - 12:30 | Post-deadline talk |
| --- | --- | --- |
| **2.7 μm Single-frequency TEM00 operation of Sb-based Diode-Pumped External-Cavity VCSEL**
A. Laurain, L. Cerutti, M. Myara, A. Garnache, Institut d’Electronique du Sud, CNRS UMR5214, Université Montpellier 2 (FR).
We present for the first time to our knowledge, the design, technology and performance of a single-frequency tunable Sb-based diode-pumped type-I quantum well vertical-external-cavity-surface-emitting lasers (VeCSEL) emitting at 2.7 μm operating at RT in CW in a low divergence TEM00 mode. [4693] |

Sala Auditorium, Palazzo dei Congressi

| 12:00 - 12:15 | Post-deadline talk |
| --- | --- | --- |
| **Fabrication of optofluidic chips in PMMA by femtosecond laser micromachining**
Fabrication of an integrated optofluidic chip in PMMA substrates by femtosecond laser micromachining is demonstrated. Both Fresnel lenses and microchannels have been realized, thus enabling on-chip integrated fluorescence detection. [4694] |

| 12:15 - 12:30 | Post-deadline talk |
| --- | --- | --- |
| **Optical characterization of block copolymers nanostructured thin films**
We demonstrate the existence of collective plasmonic resonances of gold nanoparticles (AuNPs) after an electromagnetic stimulation, arising from the ordered arrangement of AuNPs in a periodic array of hexagonally packed cylinders created by self-assembly of a block-copolymer (BCP). [4706] |

Sala Azzurra, Palazzo dei Congressi

| 12:00 - 12:15 | Post-deadline talk |
| --- | --- | --- |
| **Generation of Continuous Wave THz Radiation from a Quantum-Dot Photomixer Device**
1School of Engineering, Physics and Mathematics, University of Dundee (GB), 2Ferdinand-Braun-Institute (DE).
The generation of continuous wave (CW) terahertz (THz) emission from a photomixer device based on a quantum-dot (QD) structure has been demonstrated. Two spatially combined distributed feedback (DFB) laser diodes (LD’s) with single longitudinal modes at 847nm and 850nm have been used as pump sources. [4701] |

| 12:15 - 12:30 | Post-deadline talk |
| --- | --- | --- |
| **2.7 μm Single-frequency TEM00 operation of Sb-based Diode-Pumped External-Cavity VCSEL**
A. Laurain, L. Cerutti, M. Myara, A. Garnache, Institut d’Electronique du Sud, CNRS UMR5214, Université Montpellier 2 (FR).
We present for the first time to our knowledge, the design, technology and performance of a single-frequency tunable Sb-based diode-pumped type-I quantum well vertical-external-cavity-surface-emitting lasers (VeCSEL) emitting at 2.7 μm operating at RT in CW in a low divergence TEM00 mode. [4693] |

END OF EOS TOPICAL MEETINGS

Notes
4th EOS Topical Meeting on Optical Microsystems (OµS’11)

OµS_4472_001

Interference band-pass infrared filter

Institute of Technology Rzeszow University (PL), Lviv Polytechnic National University, Department of Photonics (UA).

Structure "layer with the high refractive index – interference mirror – layer with the high refractive index" as dielectric interference filter for the infra-red region was researched. The basic spectral parameters of such band-pass filter were determined.

OµS_4483_002

Microscopy technique based on NLCs application for detecting structural defects on the surface of quartz elements
M.G. Tomilin

St. Petersburg University of Information Technologies, Mechanics and Optics, Physics Department (RU).

The combination of optical polarizing microscope with nematic liquid crystal (NLC) layer applied on the objects' surface makes possible to increase the microscopes' power and operation functions. The example of invisible structural defects detecting on the surface of industrial quartz elements illustrate new microscope achievements.

OµS_4487_003

Optical tweezer array based on 2D photonic crystals
X. Ren, C. Wang, Y. Li, S. Liu, X. Zhang

Xiamen University, Physics Department (CN).

We describe a simple method for creating multiple optical tweezers from a single laser beam using 2D photonic crystals (PhCs). As a demonstration of this technique, we have implemented a 1μm period hexagonal lattice pattern using 700 nm 2D PhCs.

OµS_4496_004

Characterization of rough non-uniform thin films using imaging spectroscopic reflectometry

It is shown that imaging spectroscopic reflectometry enables us to perform the characterization of thin films exhibiting two important defects, i.e. area non-uniformity in optical parameters and boundary roughness. This is illustrated through the characterization of epitaxial ZnSe thin films.

OµS_4506_005

Good Optical Limiting Performance of Indium and Gallium Phthalocyanines in Polymer Host
A. Elmali, M. Yüksek, M. Durmuş, H. Gul Yaglioglu

Department of Engineering Physics, Faculty of Engineering, Ankara University (TR), Department of Chemistry, Gebze Institute of Technology (TR), Department of Chemistry, Rhodes University (ZA).

The optical limiting performances of tetra- and octasubstituted gallium and indium phthalocyanine complexes have been studied using the open-aperture Z-scan technique with 4 ns pulses at 532 nm. All gallium and indium complexes of phthalocyanines in film form are good candidates for optical limiting applications.

OµS_4511_006

Confocal laser microscope writing of micro-patterns in broad-band light-emitting organic and insulating thin films
M.A. Vincenti, F. Bonfigli, D. Brogioli, R.M. Montereali

ENEA, UTAPRAD-MNF, Photonic Micro and Nanostructures Laboratory (IT).

A confocal laser scanning microscope was used for the direct laser patterning of broad-band light-emitting organic Alq3 thin films and LiF containing color centers by using spectrally selective photobleaching effects. It was also used as characterization tool to investigate the fluorescent structures with sub-micrometric spatial resolution.
POSTER SESSION | Monday, 26 September, 19:15-20:30 | The patio of the hotel la Residenza

OµS_4512_007
Lab on fiber towards the integration to the fiber facet of Hybrid Photonic Plasmonic Crystals
A. Ricciardi1, A. Crescitiello1, M. Consales1, C. Granato2, E. Espósito2, A. Cutolo1, A. Cusano1, “Optoelectronic Division, Department of Engineering, University of Sannio (IT), 2CNR-ICB “E. Caianiello” (IT).
A 2D hybrid metallo-dielectric photonic crystal (PC) nanostructure, fabricated by innovatively applying electron beam lithography on a single mode optical fiber tip, is presented. Photonic-plasmonic resonances can be excited and tuned by acting on the PC parameters. We show some preliminary experimental studies demonstrating the high sensitivity of excited resonances to acoustic pressure waves in air.

OµS_4518_008
Security collinear holographic storage based on micro-diffusers
W.-C. Su1, Y.-W. Chen2, Y.-J. Chen1, S.S. Yang1, 1Graduate Institute of Photonics, National Chung Hua University of Education (TW), 2Institute of Photonics Technologies, EE Dept. of National Tsing Hua University (TW).
A security collinear holographic storage using shift multiplexing is proposed and demonstrated. The security function of this storage system is based on a micro-diffuser. It offers more flexibility function during the recording processes. Storage capacity of our collinear holographic system is also investigated.

OµS_4519_009
Long Period Grating In Air-Core Photonic Crystal Optical Fibers
A. Iadicicco1, S. Campopiano1, A. Cusano2, A. Cutolo1, 1Department of Technology, University of Naples “Parthenope” (IT), 2Optoelectronics Division - Engineering Department, University of Sannio (IT).
In this work, we report on the fabrication of Long Period Gratings (LPGs) in air-core photonic bandgap fibers by using pressure assisted Electrode Arc Discharge (EAD) technique. In particular, the EAD procedure enables the modification of holes in both core and cladding while the pressure actuation is used to avoid holes collapsing.

OµS_4522_010
Investigation of room-temperature Raman conversion in bulk silicon
V. Lisinet斯基, S. Schrader, University of Applied Sciences Wildau, Engineering Physics (DE).
Theoretical investigation of stimulated Raman scattering in a silicon bulk crystal at room temperature is performed. Single-pass and Raman laser schemes pumped by pulses in time scale from sub-nanosecond to tens of nanoseconds are considered.

OµS_4529_011
Fabrication of the PDMS bending cones by CO₂ laser machining of PMMA, for micro-fluidics applications
M. Riahi1, Laser and plasma research institute, Shahid Beheshti University (IR).
Bending holes are fabricated on a PMMA sheet by adjusting the engraving parameters in a CO₂ laser engraving system. The holes are molded by PDMS to make the bending cones. The physics behind fabrication of the bending holes and the application of the bending cones in micro-fluidics as a mixer is presented.

OµS_4530_012
Evaluation of an autonomous microfluidic system to measure arsenic in drinking water based on fluorescence detection
F. Truffer1, D. Petrovic1, S. Amos1, N. Buffi2, P. Renaud2, D. Merulla3, J.R. van der Meer3, M. Geiser1, 1System Engineering, HES-SO Valais (CH), 2Laboratory of Microsystems Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL) (CH), 3Department of Fundamental Microbiology, University of Lausanne (UNIL) (CH).
In order to build a compact autonomous microfluidic system to measure arsenic in drinking water we have designed an opto-electro-mechanical system (20x11x20cm³) around a microfluidic system containing living cells as sensor, which collects water from the environment, senses it and communicates with a remote computer, all with its own energy and data processing.

OµS_4531_013
Double CSRR for water content detection in biological matter
L. Lo Spada, F. Bilotti, L. Vegni, Department of Applied Electronics, “Roma Tre” University (IT).
In this study, a low-cost, compact, and high-performing metamaterial-based biosensor operating in the THz frequency range is presented. The sensor is designed to detect the presence of water content in biological matter by spectral absorption measurements.
OµS_4533_014
Visualization of thermal fields in anodic aluminum oxide using speckle correlation method
The aim of this paper is to develop a method of visualization of thermal field in the thin films without using infrared temperature sensors. The all-optical approach is investigated which based on mapping of two-dimensional correlation function of dynamic speckles produced by thermally induced strain and distortions of the film.

OµS_4535_015
Single and multi-beam evanescent Bessel tip for near-field microscopy
S.N. Kurulkina, V.N. Belyi, N.I. Mukhurov, N.S. Kazak; B.I. Stepanov, Institute of Physics of NAS of Belarus (BY).
A theory of generation of superposition of evanescent Bessel light beams at the boundary of two dielectrics is developed when conditions of the total internal reflection are fulfilled. On the base of this a virtual single and multi-beam Bessel tip with sub-wavelength resolution is proposed for near-field optical microscopy.

OµS_4536_016
Evaporable self-assembled dyes with tuned optical properties for nanostructures
K. Grytsenko1, P. Lytvyn, T. Doroshenko1, O. Navazenko1, O. Fedoryak1, O. Tolmachev2, Yu. Slominski2, Yu. Biri2, V. Kuzi2, S. Schrader1; 1Institute of Semiconductor Physics (UA), 2Institute of Organic Chemistry (UA), 3University of Applied Sciences Wildau (DE).
Rows of the evaporable dyes, able to form covalent bond with substrate were synthesized and deposited on the PTFE/gold/glass nanostructures, made by AFM tip. The influence of dye chemical structure, deposition conditions and substrate type on optical properties was systematically studied.

OµS_4546_017
Plasmon-resonance assisted fiber-optic resonator chemical sensor
A. Giovinetti1, S. Avino1, G. Gagliardi1, P. Saghafi1, M. V. Ksianzou2, O. Tolmachev2, N.I. Mukhurov, N.S. Kazak; 1Istituto Nazionale di Ottica (INO) (IT), 2Institute of Organic Chemistry (UA), 3University of Applied Sciences Wildau (DE).
We developed a novel interrogation scheme of a surface-plasmon-resonance (SPR) sensor. A thin gold layer is fabricated for SPR excitation via laser evanescent-field interaction in prisms as well as silica fibers. The SPR chip is inserted in a high-finesse fiber-optic resonator to provide high-sensitivity for chemical sensing in various environments.

OµS_4549_018
Optical Characterization of Standard Ultramicroscopy System
N. Jähring1, S. Saghaif2, K. Becker1, H.-U. Döder1; 1Vienna University of Technology, FKE, Dept. of Bioelectronics (AT), 2IFAC-CNR, Center for Brain Research (MUW), Sect. Bioelectronics (AT), 3University of Oldenburg, Dept. Neurobiology (DE).
In this project we analyzed laser beam characteristics of the standard ultramicroscopy system such as the laser intensity along the line of focus, the length of the focus at the new constructed beam waist and the laser beam uniformity along the propagation axis.

OµS_4553_019
pH measurement in esophagus and stomach with a novel optical fiber sensor
F. Baldini1, G. Ghini1, A. Gianetti1, F. Senesi1, C. Trono1; IFAC-CNR, Institute of Applied Physics (IT).
A novel optical fiber tip was designed and characterized for pH detection in the gastro-esophageal apparatus. A pH indicator covalently bound on controlled pore glass (CPG) was used and the CPG were immobilized at the end of the optical fibers in order to have a sensitive probe for pH measurements into the stomach.

OµS_4554_020
Compact system for cell counting and visualization using digital in-line holographic microscopy
M. Mihalcescu1, M. Kosko1; 1National Institute for Research and Development in Microtechnologies (RO); 2Politehnic University from Bucharest (RO).
We present our study regarding a compact system design for blood cells counting and visualization simultaneously using digital in-line holographic microscopy. The system includes a pinhole and microchannel in PDMS substrate. The geometrical parameters are established after numerical analysis of the diffracted field.
OµS 4560_021
Induced changes in refractive index and near-IR spectrum of polycarbonate-sio₂ thin films by Vis-IR lasers
H. Ehsani¹, A.M. Ghorannevis², 1Department of Physics, Islamic Azad University, Nor branch, Mazandaran, Iran (IR), 2Plasma Research Center, Islamic Azad University, Science and Research Branch, Mazadaran, Iran (IR).
Polycarbonate lenses are the largest alternatives used in modern lenses. Because of their great transparency and high infraction index, polycarbonate lenses can bend light at much higher degrees than other forms of plastic lenses. In this paper the effects of Vis-IR laser on refractive index and near-IR spectrum of polycarbonate have been investigated.

OµS 4562_022
Manifestation of phase mask sampling in spiral phase contrast imaging
M. Baránek, Z. Bouchal; Department of Optics, Palacký University (CZ).
Spiral phase contrast imaging was recently proposed for a strong edge contrast enhancement in optical imaging of amplitude and phase objects. In this paper, phenomena that are manifested in real experiments due to defocusing and sampling of the spiral phase mask are discussed.

OµS 4571_023
Scanning optical vortex microscope
J. Masajada, A. Popiołek-Masajada, I. Augustyniak; Wroclaw University of Technology, Institute of Physics (PL).
Scanning vortex microscope is a system in which sample is scanned by a beam carrying optical vortex. The state of the art of vortex microscopy is presented in brief. We also show how to scan the sample just by moving the optical vortex inside the laser beam. The possible applications of scanning vortex microscopy are discussed.

OµS 4573_024
Characterizing the effects of coherent laser beams and noncoherent LED beams on annihilation of bread mould fungus
R. Penjweini^{1,2}, K.W. Kratky¹, H.-U. Dodt¹, S. Saghafi², 1Physics of Physiological Processes, Faculty of Physics, University of Vienna (AT), 2Department of Bioelectronics, Institute of solid state Electronics, Technical University of Vienna (AT).
In this paper, Spectrophotometric and Fluorescence Microscopic techniques are employed to detect the bread mould fungus. The effects of coherent beams (laser) and non-coherent beams (LEDs) on eradication of bread mould fungus are investigated. It is shown that green beams generated from second harmonics of Nd:Yag and green LED with an incident dose of 370 mJ/cm² provides the optimal effects.

OµS 4591_025
Instabilities in Kerr-nonlinear coupled microring resonators
J. Petráček; Institute of Physical Engineering, Brno University of Technology (CZ).
We investigate stability of steady-state solutions for Kerr-nonlinear structures consisting of coupled microring resonators. We present numerical examples that demonstrate existence of self-pulsing and chaotic solutions.

OµS 4594_026
Diffractive Linear Beam Splitters with Sub-Micro Structures
M. Ferstl, C. Kratz; Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut (DE).
Various linear beam splitters either with a high fan-angle or generating a high number of diffraction orders have been realized as binary phase gratings with critical dimensions down to 110 nm. Rigorous simulation results from Fourier Modal Methods as well as results from scalar theory are compared to the actual measurements.

OµS 4597_027
Edge Artefacts in Confocal Microscopy
M. Rahles¹, R. Gillhaus², E. Reithmeier^{1,2}; 1Leibniz Universität Hannover, Hannover Center for Optical Technologies (DE), 2Leibniz Universität Hannover, Institute of Measurement and Automatic Control (DE).
We analyse the edge response of a high NA confocal microscope by means of a numerical model based on Debye’s theory and the rigorous coupled wave analysis. Confocal image stacks were simulated for various step heights, numerical aperture sizes and polarisation states of the illuminating light source.
OµS_4604_028
Fano resonances in negative refracting photonic crystal
P. Dardano, M. Gagliardi, M. Iodice, V. Mocella; IMM-CNR Unità di Napoli (IT).
In this paper we present the experimental evidence of Fano dielectric resonances in a photonic crystal (PhC) with a negative refractive behavior. In this kind of metamaterial a resonance is excited and determine the anomalous properties behaving as a polaritonic resonance in metallo-dielectric even if this is a pure dielectric properties without any free carrier for the frequencies where effective refractive index is negative.

OµS_4611_029
Dynamic Holographic Optical Tweezers for biological inspection
L. Miccio1, F. Merola1, P. Memmola1, P. Ferraro1, P. Netti2; 1Istituto Nazionale di Ottica del CNR (IT), 2Interdisciplinary Research Centre in Biomaterials – CRIB University of Naples Federico II (IT).
Holographic Optical tweezers is realized to trap biological specimen. Algorithm improvement for suitable trapping is presented besides interferometric measurement of trapped object.

OµS_4614_030
Determination of light scattering in water vapour by the use of simulations of scattering in fog
K. Epple1,2, A. Gröning2, M. Tahedl2, M. Pfeffer1; 1University of Applied Sciences Ravensburg-Weingarten, Optische Systemtechnik (DE), 2ifm electronic GmbH (DE), 3Wenglor sensoric gmbh (DE).
Water droplets affect the performance of optical sensors. In this paper the scattering of light by small water droplets in the work environment is being studied. It is shown that the applied method for the simulations is confirmed by test results. It is assessed that water vapour is comparable to moderate fog with a 170 times higher density.

OµS_4623_031
All-optical modulating device based on the CMOS-compatible technology of amorphous silicon
S. Rao1, F.G. Della Corte1, C. D’Addio1,2; 1Università “Mediterranea” di Reggio Calabria – DI.M.E.T. (IT), 2Institute for Microelectronics and Microsystems – Consiglio Nazionale delle Ricerche (IMM-CNR) - Unit of Napoli (IT).
We demonstrate all-optical modulation at the wavelength of λ=1.55 μm in low loss hydrogenated amorphous silicon (a-Si:H) waveguides. The infrared absorption (~20 dB) exploits the photoinduced free carriers generated by 532 nm pump laser pulses. Characteristic rise and fall times of ~20 ns were obtained.

OµS_4637_032
Fabrication, performance and modeling of critical-angle transmission gratings
M.L. Schattenburg, R.K. Heilmann, A. Bruccoleri, P. Mukherjee; MIT Space Nanotechnology Laboratory, Massachusetts Institute of Technology (US).
In this poster we present details of recent nanofabrication results and show experimental results of synchrotron diffraction efficiency measurements which are compared to computer modeling using coupled-mode electromagnetic calculations.

OµS_4641_033
Optical properties of carbon nanostructures
G. Speranza1, L. Minati1, S. Torreno2, M. Ferrari2, A. Chiasera2, F. Baldini3, G. Ghini3; 1FBK (IT), 2CNR-IPN, CSMFO Lab. (IT), 3CNR-IFAC (IT).
Oxidized short multi-walled carbon nanotubes were produced by strong acid treatment with the aid of sonication. The carbon nanostructures are luminescent in the visible range. The luminescence is probably due to the presence of defects sites on the surface of these carbon nanostructures.

OµS_4645_034
An Optical Electromagnetic Field Sensor for Aerospace and Distributed Antenna Systems Monitoring
M. Medugno, I. Rendina; Consiglio Nazionale delle Ricerche, Institute for Microelectronics and Microsystems (IT).
Electromagnetic monitoring of communication devices in space platforms and over large scale RF terrestrial systems is a critical task, in some cases approached with expensive satellite network systems. We propose an integrated optical device enabling an affordable electromagnetic field sensing in the Fresnel region. Such physical sensor is suitable for monitoring critical structures in aerospace and distributed antenna systems. The sensor theoretical bases, its technological implementation steps and characterization, and some applications to terrestrial and aerospace field monitoring are discussed.
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated optical sensor array for measuring amplitude and phase of electric fields in radiating systems</td>
<td>C. Ciminelli, F. Dell’Olio, M.N. Armenise; Optoelectronics Laboratory, Politecnico di Bari (IT).</td>
<td>An array of E-field lithium niobate waveguide sensors is proposed in this paper. Each element of the array, allowing the simultaneous estimation of both module and phase of the field, has a bandwidth of several GHz and a resolution less than 1 mV/m.</td>
</tr>
<tr>
<td>Numerical analysis of luminescent induced solitonic channel</td>
<td>R. Passier, M. Alonzo, E. Fazio; Ultrafast Photonics Laboratory, Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Sapienza Università di Roma and CNISM (IT).</td>
<td>In this paper we discuss numerical results, efficiency and scattering losses of a luminescent spatial soliton (USS) waveguide induced in lithium niobate obtained by photorefractive and Pockels effects. We demonstrate via numerical results the possibility to induce low loss waveguides with a loss ratio as low as 0.05 dB/cm, confirming the high potential of the USS for all-optical routing applications.</td>
</tr>
<tr>
<td>Direct Visualization of the Axial Phase Evolution of Light Fields Emerging from Microstructures</td>
<td>M.S. Kim, T. Scharf, H.P. Herzig; Ecole Polytechnique Fédérale de Lausanne (EPFL) (CH).</td>
<td>We investigate the axial phase evolution of light emerging from microstructures. The high-resolution interference microscope (HRIM) allows to record three-dimensional (3D) phase distributions in differential and propagation modes along the longitudinal direction. We apply this differential-mode HRIM to study the axial phase evolution of particular cases of microstructures, for instance, the photonic nanojet generated by a dielectric microsphere and the spot of Arago created by a micrometer-size metallic disc.</td>
</tr>
<tr>
<td>Optical surveillance of windows</td>
<td>R.K. Hjelmeland, L.E. Helseth; University of Bergen, Institute of Physics and Technology (NO).</td>
<td>The objective is to design a model system for investigating pollution on optical windows.</td>
</tr>
<tr>
<td>SPR in Plastic Optical Fiber: a simple geometry for low cost biosensors</td>
<td>N. Cennamo, D. Massarotti, L. Conte; Second University of Naples, Dept. of Information Engineering, (IT); CNR-IREA (IT); University of Naples "Federico II", Dept. of Physical Sciences, (IT).</td>
<td>In this paper, an optical sensor system based on Surface Plasmon Resonance (SPR) at the interface of a liquid sample and a sandwich of a thin gold film and a dielectric buffer deposited on half of the exposed core of a plastic optical fiber, is presented. This has proven to be a suitable geometry for measuring the refractive indexes of liquids whose refractive index falls around 1.35. Furthermore, the proposed device is low cost and relatively easy to implement, so it may be particularly attractive for biosensing applications.</td>
</tr>
<tr>
<td>Side-pumped slanted faces of high power Yb:YAG\YAG thin-disk laser</td>
<td>H. Amini Pour, M.T. Mehrabani, I. Mashaeikhy Asl; Iranian National Center of Laser Science and Technology (INLC) (IR).</td>
<td>We present a slanted faces of thin-disk composite Yb:YAG\YAG laser which is sidepumped by four non-symmetric hollow-ducts. Not only the pump light distribution and the absorption efficiency, but also the resulting optical efficiency and output power of our modeling have been calculated by using Monte-Carlo ray tracing and Finite Element Analysis (FEA) methods.</td>
</tr>
<tr>
<td>Quasi-Cavity performance used for end-pumped Thin-disk lasers</td>
<td>H. Amini Pour, R. Aghbolagh; A. Ghaedzadeh; Iranian National Center of Laser Science and Technology (INLC) (IR), Department of Physics, Guilan University (IR).</td>
<td>We used two types of quasi-cavity equipped on both sides with mirrors and a transparent hole at their centers. We report the predicted thermo-optical behavior of the quasi-cavity by using FEA method. We present a composite diamond / YAG crystal quasi-cavity for better performance in high power end-pumped thin – disk laser.</td>
</tr>
</tbody>
</table>
ETML’11 / Poster Presentations

POSTER SESSION | Monday, 26 September, 19:15-20:30 | The patio of the hotel la Résidencia

2nd EOS Topical Meeting on Lasers (ETML’11)

ETML_4466_003
Optimization of SFUR optical cavity for high power lasers with moderate gain
A.M. Orishich, P.A. Statsenko, V.B. Shulyatyev; 1Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences (RU), 2Institute of Laser Physics, Russian Academy of Sciences (RU).
Numerical and experimental optimization of the self-filtering unstable resonator (SFUR) was performed for moderate-gain lasers in terms of beam quality, feedback and mode volume. Some design features of SFUR cavity concerning of the optimum choice of mirror size and misalignment sensitivity were also considered.

ETML_4466_004
Development of azobenzene-containing materials for luminescent holographic structures and distributed feedback lasers
L.M. Goldenberg, V. Lisnitskiy, Y. Grisof, J. Stumpe, S. Schrader; 1University of Applied Science Wildau (DE), 2Institute of Thin Film Technology and Microsensors (DE), 3Fraunhofer IAP (DE).
Using a number of azobenzene-containing materials (covalently or ionically bound and host-guest systems) strongly luminescent films were manufactured. The films exhibited amplified spontaneous emission (ASE) and were capable of producing luminescent surface relief gratings (SRG) via holographic inscription.

ETML_4514_005
Laser buildup analysis and performance optimization of a Vertical External Cavity Surface Emitting Organic Laser (VECSOL)
H. Rabbani-Haghighi, A. Slove, S. Chenais, S. Forget; Laboratoire de Physique des Lasers, Université Paris 13 / CNRS (FR).
Vertical External Cavity Surface Emitting Organic Lasers (VECSOLs) gather broad tunability in the visible, low cost, power scalability and high beam quality. Relying on a dynamical numerical simulation, a record energy conversion efficiency of 57% is experimentally demonstrated.

ETML_4520_006
Calculation of heat generation in a 100 J cryogenically cooled multi-slab amplifier operating at 10 Hz for ELI and HiLASE projects
M. Sawicka, M. Divoky, J. Novak, B. Rus; 1HiLASE Project (CZ), 2ELI – Beamlines Project (CZ).
A 3D ray-tracing model for calculation of stored energy, heat deposition and amplification in the cryogenically cooled Yb:YAG multi-slab amplifier is presented. It shows 6 times increase in heat generation in the slab when absorptive Cr:YAG cladding for ASE management is used.

ETML_4524_007
Temporal and Spectral Characteristics of Pulsating, Erupting and Creeping Solitons Under Higher Order Effects
S.C.V. Latas, M.F.S. Ferreira; Department of Physics, University of Aveiro (PT).
We investigate numerically the characteristics of pulsating, erupting and creeping soliton solutions of a complex Ginzburg-Landau equation (CGLE), including the third-order dispersion, intrapulse Raman scattering and self-steepening effects. For some ranges of the parameter values they are transformed into fixed-shape solitons.

ETML_4532_008
Nonlinear optical switch for laser Q-switching based on cascaded long-period fiber gratings in Yb-doped fiber and fiber Bragg grating
P. Peterka, P. Horátko, R. Stolík, P. Navrátil, P. Zdrowski; 1Institute of Photonics and Electronics AS CR, v.v.i. (CZ), 2Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering (CZ), 3on leave in Optoelectronic Research Centre, University of Southampton (GB).
We propose an all-fiber Q-switched fiber laser in which the optical switch exploits interplay between resonant nonlinearity of a section of ytterbium-doped fiber and transmission of fiber gratings combination. Switching characteristics of the nonlinear switch are analyzed using numerical model.
ETML' 11 / Poster Presentations

POSTER SESSION | Monday, 26 September, 19:15-20:30 | The patio of the hotel la Residenza

ETML_4544_009
Optical properties of composite Nd:YAG ceramic slab laser active element with collinear zig-zag pumping
A. Aleknavičius, A. Michailovas, M. Gabalis, V. Girdauskas; 1Center for Physical Sciences and Technology, Institute of Physics (LT), 2Ekspla (LT), 3Vytautas Magnus University, Faculty of Natural Sciences (LT).
Experimental results of composite slab laser active element application for generation and amplification is presented. Measured gain, lasing parameters and wave front aberrations will be presented.

ETML_4552_010
Waveguide lasers in Tm3+-doped KY1-x-yGdxLuy(WO4)2 lattice matched layer grown on a KY(WO4)2 substrate by Liquid Phase Epitaxy (LPE), laser oscillation in CW and in Q-switching regimes at ~1.84 μm, in slab and channel waveguides, is demonstrated.

ETML_4569_011
Two-photon pumped organic microcavity laser
We report on an optically pumped microcavity laser based on vacuum-deposited thin Alq3:DCM organic film. Laser emission was achieved due to the two-photon absorption of an infrared pump beam. Threshold analysis and independent z-scan measurements point to an extremely high two-photon absorption coefficient of our organic layer.

ETML_4588_012
Laser emission at 1060 nm in Nd3+ doped glass microspheres without coupling devices
Microspheres of Barium Titano Silicate glass, doped with Nd3+ ions have been made and have achieved laser emission at 1064 nm when pumped at 514 nm using low pump power at room temperature and detecting without any coupling device.

ETML_4605_013
Light-beam spatial filtering in a three-dimensional medium index contrast photonic crystals
M. Peckus, L. Maigyte, M. Rutkauskas, M. Malinauskas, V. Šrutkaitytė, K. Staliunas; 1Center for Physical Sciences and Technology (LT), 2Departamento de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya (ES), 3Laser Research Center, Dept. Of Quantum Electronics, Vilnius University (LT), 4Institució Catalana de Reserca i Estudis Avançats (ICREA) (ES).
Three-dimensional photonic crystals with woodpile structure and lattice period varying linearly in space are demonstrated to exhibit spatial filtering effect of light beams. Medium index contrast photonic crystals were fabricated using laser multi-photon polymerization technique.
PLEASE TICK OFF YOUR PREFERRED TOPICAL MEETING

☐ 4th EOS Topical Meeting on Optical Microsystems (OµS’11)
☐ 2nd EOS Topical Meeting on Lasers (ETML’11)

REGISTRATION CATEGORY

The full-time-registration for OµS’11 and ETML’11 includes admission to both Topical Meetings, a digest CD-Rom with the complete volume of accepted abstracts of both Topical Meetings and lunches on the 26 and 27 September.

<table>
<thead>
<tr>
<th>Early-Bird registration (until 12 September)</th>
<th>Universities, private persons, German and Non-EU companies and non-university research institutes</th>
<th>EU companies and EU non-university research institutes (except Germany)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-bird registration for members</td>
<td>☐ 450 € (incl. 19% VAT)</td>
<td>☐ 378.15 €* (excl. VAT, VAT no. required)</td>
</tr>
<tr>
<td>Early-bird registration for non-members</td>
<td>☐ 500 € (incl. 19% VAT)</td>
<td>☐ 420.17 €* (excl. VAT, VAT no. required)</td>
</tr>
<tr>
<td>Early-bird registration for student members</td>
<td>☐ 290 € (incl. 19% VAT)</td>
<td>☐ 243.70 €* (excl. VAT, VAT no. required)</td>
</tr>
<tr>
<td>Early-bird registration for student non-members</td>
<td>☐ 300 € (incl. 19% VAT)</td>
<td>☐ 252.10 €* (excl. VAT, VAT no. required)</td>
</tr>
<tr>
<td>Early-bird registration for one-day</td>
<td>☐ 260 € (incl. 19% VAT)</td>
<td>☐ 218.49 €* (excl. VAT, VAT no. required)</td>
</tr>
<tr>
<td></td>
<td>*PLEASE NOTE: Registrations from companies and non-university research institutes registered in EU countries (except Germany) are exempted from VAT, if VAT no. is given.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAT no.:</td>
<td></td>
</tr>
</tbody>
</table>

Extra digest (CD-ROM)

| Including the complete volume of accepted abstracts of OµS’11 and ETML’11 | ☐ 65 € member rate (incl. 7% VAT) | ☐ 60.75 € member rate* (excl. VAT, VAT no. required) |
| | ☐ 75 € non-member rate (incl. 7% VAT) | ☐ 70.09 € non-member rate* (excl. VAT, VAT no. required) |

☐ I have read and accept the General Terms and Conditions of the EOS - Events & Services GmbH at:
http://www.myeos.org/aboutus/terms_and_conditions

PLEASE FILL IN YOUR NAME AND ADDRESS

☐ Ms. ☐ Mr.

Title

First name

Name

Company
PAYMENT OPTIONS

1) CREDIT CARD PAYMENT

Payment shall be made in € by credit card. If bank transfer is preferred see details below.

Charge to my: [] Mastercard [] VISA [] Eurocard [] American Express

Card No.: ____________________________

Expiry Date: ____________________________

Verification No.: [] Mastercard, Visa, Eurocard: The final 3-digit number located on the back of your credit card.
[] American Express: The four small numbers printed on the front of your card, above the last few embossed numbers.

Name of credit card holder: ____________________________

Signature: ____________________________

Date: ____________________________

2) PAYMENT BY BANK TRANSFER

[] I wish to pay by bank transfer, please send me the invoice and banking details.

Please note: For payment via bank transfer we charge 15.00 € handling fee. The full registration fee must arrive at the EOS bank account before the start of the meeting. Please note that all bank fees must be paid by the attendee.

CANCELLATION POLICY

Requests for cancellation must be made in writing to the EOS Office (address see below). Refunds are subject to a processing fee of 50 €.

Cancellations received by 15 September 2011: full refund minus processing fee (50 €).
Cancellations received after 15 September 2011: no refund.
Sponsoring Opportunities

Present your products and services in a beautiful Mediterranean atmosphere and reach your target group at the EOS Topical Meetings at Capri!

The programme will be available as electronic version on the web a long time in advance to the topical meetings and as print version on-site.

Programme advertising
- on the backcover (4/4 colours) 1200 €
- on the inside backcover (4/4 colours) 900 €
- on the inside front cover (4/4 colours) 900 €
- 1/1 page in the programme (b/w) 500 €
- 1/2 page in the programme (b/w) 300 €

Table Top
- unmanned 550 €
- manned 850 €

Coffee break
- sponsoring for 1 Topical Meeting 800 €
- sponsoring for both Topical Meetings 1300 €

Conference Dinner sponsoring 2000 €

Delegate T-Shirts
- 1500 €

Delegate bag/folder inserts
- 650 €

Electronic advertising at event websites
- 180 x 600 px, fixed 1350 €
- 180 x 400 px, fixed 1000 €
- 180 x 200 px, fixed 535 €

All prices are indicated net plus 19% VAT if applicable. For more information please see the sponsoring reservation form next page.

Contact
EOS - Events & Services GmbH
Pamela Klages
Garbsener Landstr. 10
30419 Hannover
Germany
Phone: +49 (0)511 277 2678
Fax: +49 (0)511 2788 119
klages@myeos.org
www.myeos.org/events/capri2011

10% Discount
EOS corporate members receive a 10% discount!

Not an EOS corporate member yet? Purchase your corporate membership (fee: 300 € per year) at: www.myeos.org/shop

Individual Sponsorship Packages
No sponsoring or advertising offer suit you? We will be pleased to work with you on an individual package!

Contact
capri@myeos.org
Please select your preferred sponsorship/advertising

<table>
<thead>
<tr>
<th>Programme advertising**</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on the backcover (4/4 colours)</td>
<td>✜ 1428.00 €</td>
<td>✜ 1200 €*</td>
</tr>
<tr>
<td>on the inside backcover (4/4 colours)</td>
<td>✜ 1071.00 €</td>
<td>✜ 900 €*</td>
</tr>
<tr>
<td>1/1 page in the programme (b/w)</td>
<td>✜ 1071.00 €</td>
<td>✜ 900 €*</td>
</tr>
<tr>
<td>1/2 page in the programme (b/w)</td>
<td>✜ 595.00 €</td>
<td>✜ 500 €*</td>
</tr>
<tr>
<td></td>
<td>✜ 357.00 €</td>
<td>✜ 300 €*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table Top*</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmanned</td>
<td>✜ 654.50 €</td>
<td>✜ 550 €*</td>
</tr>
<tr>
<td>manned</td>
<td>✜ 1011.50 €</td>
<td>✜ 850 €*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coffee break*</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sponsoring for 1 Topical Meeting</td>
<td>✜ 952.00 €</td>
<td>✜ 800 €*</td>
</tr>
<tr>
<td>sponsoring for both Topical Meetings</td>
<td>✜ 1547.00 €</td>
<td>✜ 1300 €*</td>
</tr>
<tr>
<td></td>
<td>✜ 2380.00 €</td>
<td>✜ 2000 €*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conference Dinner sponsoring*</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✜ 1785.00 €</td>
<td>✜ 1500 €*</td>
</tr>
<tr>
<td></td>
<td>✜ 773.50 €</td>
<td>✜ 650 €*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delegate T-Shirts*</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✜ 1606.50 €</td>
<td>✜ 1350 €*</td>
</tr>
<tr>
<td></td>
<td>✜ 1190.00 €</td>
<td>✜ 1000 €*</td>
</tr>
<tr>
<td></td>
<td>✜ 636.65 €</td>
<td>✜ 535 €*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic advertising at event websites*</th>
<th>(incl. 19% VAT)</th>
<th>(excl. VAT, VAT no. required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 x 600 px, fixed</td>
<td>✜ 1428.00 €</td>
<td>✜ 1200 €*</td>
</tr>
<tr>
<td>180 x 400 px, fixed</td>
<td>✜ 1071.00 €</td>
<td>✜ 900 €*</td>
</tr>
<tr>
<td>180 x 200 px, fixed</td>
<td>✜ 595.00 €</td>
<td>✜ 500 €*</td>
</tr>
</tbody>
</table>

*PLEASE NOTE: Bookings from companies and non-university research institutes registered in EU countries (except Germany) are exempted from VAT, if VAT no. is given.

VAT no.: ________________________________

I have read and accept the General Terms and Conditions of the EOS - Events & Services GmbH at: http://www.myeos.org/aboutus/terms_and_conditions

Please fill in your name and address

Company ____________________________ URL ____________________________

☐ Ms. ☐ Mr. Title ____________________________ First name ____________________________ Name ____________________________

Street ____________________________ Zip/Postal code ____________________________ Country ____________________________

Telephone ____________________________ Fax ____________________________ E-Mail ____________________________

The EOS Topical Meetings at Capri 2011 are organized by EOS - Events & Services GmbH | Garbsener Landstr. 10 | 30419 Hannover | Germany
Phone: +49 (0)511 277 2670 | Fax: +49 (0)511 277 2699 | info@eos-gmbh.eu

CONFERENCE CONTACT | Phone: +49 (0)511 277 2678 | Fax: +49 (0)511 2788 119 | capri@myeos.org | www.myeos.org/events/capri2011
PAYMENT OPTIONS

1) CREDIT CARD PAYMENT

Payment shall be made in € by credit card. If bank transfer is preferred see details below.

Charge to my:
Mastercard1 □ VISA1 □ Eurocard1 □ American Express2 □

Card No.:

Expiry Date:

Verification No.:
1 Mastercard, Visa, Eurocard: The final 3-digit number located on the back of your credit card.
2 American Express: The four small numbers printed on the front of your card, above the last few embossed numbers.

Name of credit card holder:

Signature:

Date:

2) PAYMENT BY BANK TRANSFER

☐ I wish to pay by bank transfer, please send me the invoice and banking details.

Please note: For payment via bank transfer we charge 15.00 € handling fee.
The full registration fee must arrive at the EOS bank account before the start of the meeting.
Please note that all bank fees must be paid by the attendee.

CANCELLATION POLICY

Cancellations: Requests for cancellations must be made in writing to the EOS Office (address see at the end of this page). Refunds are subject to a processing fee of 10% of the total amount.

* Cancellations received by 2 September 2011: full refund minus processing fee
 after 2 September 2011: no refund.

** Cancellations received before publication of the advertising: full refund minus processing fee
 after publication of the advertising: no refund.

AGREEMENT

The signee, authorised to sign this agreement on behalf of his/her company, hereby agrees to the above listed policies and authorises EOS - Events & Services GmbH to reserve the above chosen sponsorship/advertising opportunity during the EOS Conferences OMS’11 and ETML’11, 26 - 28 September 2011, Capri, Italy.

Date Signature

The EOS Topical Meetings at Capri 2011 are organized by
EOS - Events & Services GmbH | Garbsener Landstr. 10 | 30419 Hannover | Germany
Phone: +49 (0)511 277 2670 | Fax: +49 (0)511 277 2699 | info@eos-gmbh.eu

CONFERENCE CONTACT | Phone: +49 (0)511 277 2678 | Fax: +49 (0)511 2788 119 | capri@myeos.org | www.myeos.org/events/capri2011
Upcoming EOS events

1st EOS Topical Meeting
on Micro- and Nano-Optoelectronic Systems
Ringhotel Munte am Stadtwald, Bremen, Germany | 7 - 9 December 2011
www.myeos.org/events/bremen2011 | bremen@myeos.org

DO 2012
8th EOS Topical Meeting on Diffractive Optics
Delft University of Technology, Delft, Netherlands | 27 February - 1 March 2012
www.myeos.org/events/do2012 | do2012@myeos.org

PSDM 2012
1st EOS Topical Meeting on Photonics for Sustainable Development - Focus on the Mediterranean
Ramada Plaza Tunis, Tunis, Tunisia | 31 March - 3 April 2012
Deadline for abstract submission: 5 December 2011
www.myeos.org/events/psdm2012 | psdm2012@myeos.org

ANGEL 2012
2nd Conference on Laser Ablation and Nanoparticle Generation in Liquids
Hotel Caparena in Taormina, Taormina (Sicily), Italy | 22 - 24 May 2012
www.myeos.org/events/angel2012 | angel2012@myeos.org

AIT 2012
6th EOS Topical Meeting on Advanced Imaging Techniques
Hyères - Southern Alps (Provence), France | 2 - 5 July 2012
www.myeos.org/events/ait2012 | ait2012@myeos.org

EMVPO 2012
6th EOS Topical Meeting on Visual and Physiological Optics
University College Dublin (UCD), Dublin, Ireland | 20 - 22 August 2012
Deadline for abstract submission: 30 March 2012
www.myeos.org/events/emvpo2012 | emvpo2012@myeos.org

EOSAM 2012
EOS Annual Meeting 2012
Aberdeen Exhibition and Conference Centre, Aberdeen, Scotland | 25 - 28 September 2012
www.myeos.org/events/eosam2012 | aberdeen@myeos.org

For more information about EOS organized and co-sponsored events, please go to www.myeos.org/events.

Should you wish to be kept informed about an EOS organized event, please send an email with your contact details to the above mentioned email address.
Publish your research

....with JEOS:RP

> open access journal

> rapid publication

> professional peer-review

> publicity & international readership

> listed with ISI Journal Citation Reports

> individual author support

> reasonable publication rates

Regardless the length of the articles, the regular publication rates are:

350 € for EOS members*

400 € for non-members

* Associate members are requested to upgrade to a full membership first (12.50 €/year).